3 resultados para Mixed model equations
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.
Resumo:
Objective: To determine current food handling practices, knowledge and beliefs of primary food handlers with children 10 years old and the relationship between these components. Design: Surveys were developed based on FightBac!™ concepts and the Health Belief Model (HBM) construct. Participants: The majority of participants (n= 503) were females (67%), Caucasians (80%), aged between 30 to 49 years old (83%), had one or two children (83%), prepared meals all or most of the time (76%) and consumed meals away from home three times or less per week (66%). Analysis: Descriptive statistics and inferential statistics using Spearman’s rank correlation coefficient (rho) (p<0.05 and one-tail) and Chi-square were used to examine frequency and correlations. Results: Few participants reached the food safety objectives of Healthy People 2010 for safe food handling practices (79%). Mixed results were reported for perceived susceptibility. Only half of the participants (53-54%) reported high perceived severity for their children if they contracted food borne illness. Most participants were confident of their food handling practices for their children (91%) and would change their food handling practices if they or their family members previously experienced food poisoning (79%). Participants’ reasons for high self-efficacy were learning from their family and independently acquiring knowledge and skills from the media, internet or job. The three main barriers to safe food handling were insufficient time, lots of distractions and lack of control of the food handling practices of other people in the household. Participants preferred to use food safety information that is easy to understand, has scientific facts, causes feelings of health-threat and has lots of pictures or visuals. Participants demonstrate high levels of knowledge in certain areas of the FightBac!TM concepts but lacked knowledge in other areas. Knowledge and cues to action were most supportive of the HBM construct, while perceived susceptibility was least supportive of the HBM construct. Conclusion: Most participants demonstrate many areas to improve in their food handling practices, knowledge and beliefs. Adviser: Julie A. Albrecht
Resumo:
This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.