3 resultados para Methods of Solar Energy Utilization
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
In reviewing methods of predator control, it would first seem appropriate to define what is meant "by "methods" and what is meant by "control." Taking the last term first, control, as applied to the predatory coyotes, bobcats, and foxes, may be defined as regulating the numbers of these animals to the point where the economic losses for which they are responsible will be reduced to a practicable minimum. In some situations, area control, i.e., limiting the numbers of the offending predator over wide areas, may be necessary for satisfactory reduction of economic losses; in other situations, spot control or localized reduction of numbers of a certain predator may be called for; in still other situations, elimination of an individual animal may be all the control that is needed. In no sense is control, as applied to coyotes, bobcats, and foxes, intended to mean extermi¬nation of a species. The term "methods" is interpreted as meaning the procedures employed against coyotes, bobcats, and foxes, and not the broader systems of predator control such as the paid hunter system, the extension system, or the much-discredited bounty system. For an excellent review of the systems of predator control, see Latham (l).
Resumo:
Most people have accepted the fact that all living things can be beneficial to mankind in some way or other. This is especially true of our wild birds, since they provide enjoyment and wholesome recreation for most of us, regardless of whether we live on farms or in the city. But despite the fact that wild birds are for the most part beneficial, at times individuals or populations of certain species can seriously affect man's interests. When such situations occur, some measures of relief are desirable and usually eagerly sought. This report is not intended to answer all the questions that may arise concerning problems with blackbirds and starlings; instead, it is merely a summary of measures used to protect agricultural crops from these birds.