3 resultados para Measured signals
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Top predators in the marine environment integrate chemical signals acquired from their prey that reflect both the species consumed and the regions from which the prey were taken. These chemical tracers—stable isotope ratios of carbon and nitrogen; persistent organic pollutant (POP) concentrations, patterns and ratios; and fatty acid profiles—were measured in blubber biopsy samples from North Pacific killer whales (Orcinus orca) (n = 84) and were used to provide further insight into their diet, particularly for the offshore group, about which little dietary information is available. The offshore killer whales were shown to consume prey species that were distinctly different from those of sympatric resident and transient killer whales. In addition, it was confirmed that the offshores forage as far south as California. Thus, these results provide evidence that the offshores belong to a third killer whale ecotype. Resident killer whale populations showed a gradient in stable isotope profiles from west (central Aleutians) to east (Gulf of Alaska) that, in part, can be attributed to a shift from off-shelf to continental shelf-based prey. Finally, stable isotope ratio results, supported by field observations, showed that the diet in spring and summer of eastern Aleutian Island transient killer whales is apparently not composed exclusively of Steller sea lions.
Resumo:
Top predators in the marine environment integrate chemical signals acquired from their prey that reflect both the species consumed and the regions from which the prey were taken. These chemical tracers—stable isotope ratios of carbon and nitrogen; persistent organic pollutant (POP) concentrations, patterns and ratios; and fatty acid profiles—were measured in blubber biopsy samples from North Pacific killer whales (Orcinus orca) (n = 84) and were used to provide further insight into their diet, particularly for the offshore group, about which little dietary information is available. The offshore killer whales were shown to consume prey species that were distinctly different from those of sympatric resident and transient killer whales. In addition, it was confirmed that the offshores forage as far south as California. Thus, these results provide evidence that the offshores belong to a third killer whale ecotype. Resident killer whale populations showed a gradient in stable isotope profiles from west (central Aleutians) to east (Gulf of Alaska) that, in part, can be attributed to a shift from off-shelf to continental shelf-based prey. Finally, stable isotope ratio results, supported by field observations, showed that the diet in spring and summer of eastern Aleutian Island transient killer whales is apparently not composed exclusively of Steller sea lions.
Resumo:
Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.