1 resultado para Lymphoma, Large-Cell, Diffuse
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (34)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (104)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (17)
- Centro Hospitalar do Porto (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (35)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (19)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (19)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (28)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (112)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (72)
- Queensland University of Technology - ePrints Archive (106)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (75)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scientific Open-access Literature Archive and Repository (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universita di Parma (2)
- Université de Lausanne, Switzerland (24)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (34)
- WestminsterResearch - UK (2)
Resumo:
Background: Large gene expression studies, such as those conducted using DNA arrays, often provide millions of different pieces of data. To address the problem of analyzing such data, we describe a statistical method, which we have called ‘gene shaving’. The method identifies subsets of genes with coherent expression patterns and large variation across conditions. Gene shaving differs from hierarchical clustering and other widely used methods for analyzing gene expression studies in that genes may belong to more than one cluster, and the clustering may be supervised by an outcome measure. The technique can be ‘unsupervised’, that is, the genes and samples are treated as unlabeled, or partially or fully supervised by using known properties of the genes or samples to assist in finding meaningful groupings. Results: We illustrate the use of the gene shaving method to analyze gene expression measurements made on samples from patients with diffuse large B-cell lymphoma. The method identifies a small cluster of genes whose expression is highly predictive of survival. Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worth further investigation.