5 resultados para Lower Pleistocene
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In cooperation with the Lower Platte South Natural Resources District for a collaborative study of the cumulative effects of water and channel management practices on stream and riparian ecology, the U.S. Geological Survey (USGS) compiled, analyzed, and summarized hydrologic information from long-term gaging stations on the lower Platte River to determine any significant temporal differences among six discrete periods during 1895-2006 and to interpret any significant changes in relation to changes in climatic conditions or other factors. A subset of 171 examined hydrologic indices (HIs) were selected for use as indices that (1) included most of the variance in the larger set of indices, (2) retained utility as indicators of the streamflow regime, and (3) provided information at spatial and temporal scale(s) that were most indicative of streamflow regime(s). The study included the most downstream station within the central Platte River segment that flowed to the confluence with the Loup River and all four active streamflow-gaging stations (2006) on the lower Platte River main stem extending from the confluence of the Loup River and Platte River to the confluence of the Platte River and Missouri River south of Omaha. The drainage areas of the five streamflow-gaging stations covered four (of eight) climate divisions in Nebraska—division 2 (north central), 3 (northeast), 5 (central), and 6 (east central).
Resumo:
In Alaska, as in arctic and subarctic Eurasia, important natural-focal zoonoses are rabies, brucellosis, tularemia, trichinosis, alveolar hydatid disease, cystic hydatid disease, and diphyllobothriasis. Most frequently affected are aboriginal peoples in villages within biocenoses that include the natural parasite-host assemblages. Pathogens are transmitted to man from wild animals and from dogs, which are important as synanthropic hosts. The prevalence and rate of transmission of certain pathogens in natural foci are related to the numerical density of small mammals, especially rodents, which may themselves be involved as hosts, and on which the numbers of their predators ultimately depend, such as is evident in the natural cycles of Echinococcus multilocularis and of rabies virus. Some pathogens in northern regions exhibit biological Characteristics that separate them from morphologically indistinguishable strains at lower latitudes (e.g., Trichinella spiralis and E. granulosus). Host-parasite relationships may also differ, as in the Arctic where rabies virus is maintained in populations of foxes, without significant involvement of mammals of other groups. Faunal interchanges during and after the Pleistocene period have influenced the distribution of parasite-host assemblages in Alaska.
Resumo:
Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L,Amoako PYO, et al. (2007) Proc Natl Acad SciUSA104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa’s deepest lakes.On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm>/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706mdeep, was reduced to an ~125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (~35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa.
Resumo:
The analysis of diatoms from two lake-sediment cores from southwestern Tasmania that span the Pleistocene-Holocene boundary provides insight about paleolimnological and paleoclimatic change in this region. Both Lake Vera (550 m elevation), in west-central Tasmania, and Eagle Tarn (1,033 m elevation), in south-central Tasmania, have lacustrine records that begin about 12,000 years ago. Despite significant differences in location, elevation, and geologic terrane, both lakes have, had similar, as well as synchronous, limnological histories. Each appears to have been larger and more alkaline 12,000 years ago than at present, and both became shallower through time. Fossil diatom assemblages about 11,500 years old indicate shallow-water environments that fluctuated in pH between acidic and alkaline, and between dilute and possibly slightly saline hydrochemical conditions ( The synchroneity and similar character of the paleolimnological changes at these separate and distinctive sites suggests a regional paleoclimatic cause rather than local environmental effects. Latest Pleistocene climates were apparently more continental and drier than Holocene climates in southwestern Tasmania.
Resumo:
Lower Pliocene diatoms were studied from the Sisquoc Formation and lowermost Foxen Mudstone, exposed along Hams Grade north of Lompoc, California, to refine the diatom biostratigraphy of post-Monterey Formation sediments in California. Sixty-seven diatom taxa were identified in the 25 samples examined from the 790-m thick (2950-ft) section. The diatoms are assignable to the uppermost Nitzschia reinholdii Zone and Thalassiosira oestrupii Zone of Damn (1981), and five tentative subzones for local correlation are proposed. Regional correlations and taxon occurrence are discussed, and the base of the Nitzschia reinholdii Zone is redefined as at the last occurrence of Thalassionema schraderi.