2 resultados para Linguistic Knowledge Base

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wetland ecology is a relatively new field that developed from an initial interest in a few direct benefits that wetlands provide to society. Consequently, much early scientific work was stimulated by economic returns from specific wetland services, such as production of peat and provision of habitat for economically valuable wildlife (e.g., waterfowl and furbearers). Over time, societal interest in wetlands broadened, and these unique habitats are now valued for many additional services, including some that bear non market value. Common examples include carbon sequestration, flood reduction, water purification, and aesthetics. The increased recognition of the importance of wetlands has generated a diversity of job opportunities in wetland ecology and management. Despite the increased knowledge base and enhanced job market, I am not aware of any institutions that offer specialty degrees in this new discipline. Indeed, relatively few institutions offer specific wetland ecology classes, with Arnold G. van der Valk and a few of his peers at other universities being notable exceptions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.