4 resultados para Learning to learn

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In active learning, a machine learning algorithmis given an unlabeled set of examples U, and is allowed to request labels for a relatively small subset of U to use for training. The goal is then to judiciously choose which examples in U to have labeled in order to optimize some performance criterion, e.g. classification accuracy. We study how active learning affects AUC. We examine two existing algorithms from the literature and present our own active learning algorithms designed to maximize the AUC of the hypothesis. One of our algorithms was consistently the top performer, and Closest Sampling from the literature often came in second behind it. When good posterior probability estimates were available, our heuristics were by far the best.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this action research study of my classroom of sixth grade mathematics, I investigated the impact of cooperative learning on the engagement, participation, and attitudes of my students. I also investigated the impact of cooperative learning upon my own teaching. I discovered that my students not only preferred to learn in cooperative groups, but that their levels of engagement and participation, their attitudes toward math, and their quality of work all improved greatly. My teaching also changed, and I found that I began to enjoy teaching more. As a result of this research, I plan to continue and expand the amount of cooperative group work that happens in my classroom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.