3 resultados para Laboratory-acquired infection

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aseptate gregarine Paraophloidina scolecoides n. sp. (Eugregarinorida: Lecudinidae) heavily infected the midgut of cultured larval and postlarval specimens of Penaeus vannamei from a commercial 'seed-production' facility in Texas, USA. It is morphologically similar to P. korotneffi and P. vibiliae, but it can be distinguished from them and from other members of the genus by having gamonts associated exclusively by lateral syzygy. Shrimp acquired the infection at the facility; nauplii did not show any evidence of infection, but protozoea, mysis, and postlarval shrimp had a prevalence and intensity of infection ranging from 56 to 80 % and 10 to >50 parasites, respectively. Infected shrimp removed from the facility to aquaria at another location lost their gamont infection within 7 days When voided from the gut, the gregarine disintegrated in seawater. Results suggest that P. vannamei is an accidental host, although a survey of representative members of the invertebrate fauna from the environment associated with the facility failed to discover other hosts. No link was established between infection and either the broodstock or the water or detritus from the nursery or broodstock tanks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Juveniles of Contracaecum multipapillatum infected the Mayan cichlid (Cichlasoma urophthalmus) and adults infected the olivaceous cormorant (Phalacrocorax olivaceus) and the great egret (Casmerodius albus) in the coastal lagoon at Celestun, State of Yucatan, Mexico. All are new host records, and, even though the geographic locality record of Mexico for the species has not been published, unidentified but presumably conspecific specimens have been reported from there. When juveniles of C. multipapillatum were fed to a kitten, but not rats, ducks, or chickens, they developed into adults. Measurements and morphological data are provided on the specimens from the kitten. Development of an avian ascaridoid in the intestine of a mammal increases the potential of this widespread species to infect other mammals, including humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment of infection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many of these topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in understanding the epizootiological aspects of any group of parasites. At the time Meyer's monograph was completed (1933), intermediate hosts were known for only 17 species of Acanthocephala, and existing descriptions are not sufficient to permit identification of two of those. Laboratory infections of intermediate hosts had apparently been produced for only two species. Study at that time was primarily devoted to species descriptions, host and geographical distribution, structure and ontogeny. Little or nothing was known about adaptations that promote transmission and the concept of paratenic hosts was unclear. In spite of the paucity of information, Meyer (1932) summarized pathways of transmission among principal groups of hosts, visualized the relationships among life cycle patterns for the major groups of Acanthocephala, and devised models for the hypothetical origin of terrestrial life cycles from aquatic ones. Nevertheless, most of our knowledge regarding epizootiology has been recently acquired.