6 resultados para LYMPH-NODE METASTASIS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer. Design—Cross-sectional study. Animals—116 captive white-tailed deer. Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture. Results—Mycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however,M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples. Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence.
Resumo:
Setting:White-tailed deer represent the first wildlife reservoir of Mycobacterium bovis in the United States. The behavior of does with nursing fawns provides several potential mechanisms for disease transmission. Little information exists concerning transmission between doe and fawn, specifically transmammary transmission. Objective: Determine if fawns can become infected by ingestion of milk replacer containing M. bovis, thus simulating transmission from doe to fawn through contaminated milk. Design: Seventeen, 21-day-old white-tailed deer fawns were inoculated orally with 2x108 CFU (high dose, n=5), 2.5 x 105 to 2.5 x 106 CFU (medium dose, n=5), and 1x104 CFU (low dose, n=5) of M. bovis in milk replacer. Dosages were divided equally and fed daily over a 5-day period. Positive control fawns (n=2) received 1x105 CFU of M. bovis instilled in the tonsillar crypts. Fawns were euthanized and examined 35-115 days after inoculation and various tissues collected for bacteriologic and microscopic analysis. Results: All fawns in the tonsillar, high oral and medium oral dose groups developed generalized tuberculosis involving numerous organs and tissues by 35-84 days after inoculation. Three of five fawns in the low-dose oral group had tuberculous lesions in the mandibular lymph node, and one of five had lesions in the medial retropharyngeal lymph node when examined 115 days after inoculation. Conclusion: White-tailed deer fawns can become infected through oral exposure to M. bovis. Therefore, the potential exists for fawns to acquire M. bovis while nursing tuberculous does.
Resumo:
The recent discovery of tuberculosis in free-living white-tailed deer in northeastern Michigan underscores the need for increased understanding of the pathogenesis of tuberculosis in wildlife species. To investigate lesion development in white-tailed deer, 32 deer were experimentally infected by intratonsilar instillation of 300 colony-forming units of Mycobacterium bovis. Three deer each were euthanatized and examined at days 15, 28, 42, and 56 after inoculation, and five deer each were euthanatized and examined at days 89, 180, 262, and 328 after inoculation. Microscopic lesions first were seen in the medial retropharyngeal lymph node and lung 28 and 42 days after inoculation, respectively. Lung lesions were present in 12 (38%) of 32 deer, involving 23 lung lobes. Left caudal and right middle and caudal lobes were involved in 17 (74%) of the 23 affected lung lobes. Lesions in the medial retropharyngeal lymph node first appeared as granulomas composed of aggregates of macrophages and Langhans-type giant cells. Some early granulomas contained centrally located neutrophils. As granulomas developed, neutrophils were replaced with a central zone of caseous necrosis that first showed signs of mineralization 42 days after inoculation. Granulomas increased in size as the zone of caseous necrosis expanded. Peripheral fibrosis, first seen at 56 days after inoculation, progressed to only a thin fibrous capsule by 328 days after inoculation. By the termination of the study, the central necrotic core of the granuloma contained abundant liquefied necrotic material and grossly resembled an abscess. Although tuberculous lesions in white-tailed deer follow a developmental pattern similar to that in cattle, fibrosis is less pronounced and the advanced lesions may liquefy, a change seldom reported in cattle. An understanding of lesion development will aid in the identification of the spectrum of disease that may be seen in this important wildlife reservoir of tuberculosis.
Resumo:
A survey of 41 mule deer (Odocolleus hemionus) and three white-tailed deer (O. virginianus) for bovine tuberculosis was conducted on a Montana (USA) cattle ranch from 2 November 1993 through January 1994. Gross and microscopic lesions typical of tuberculosis were present in tonsil and lymph nodes of the head, thorax, and abdomen of one adult female mule deer. Additionally, a single microgranuloma considered morphologically suggestive of tuberculosis was present in one lymph node of the head of a second mule deer. Mycobacterial isolates from lymph nodes of the head and thorax of the first deer were identified as Mycobacterium bovis.
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock and the cause for many faltering bovine tuberculosis eradication programs. One approach in dealing with wildlife reservoirs of disease is to interrupt inter-species and intraspecies transmission through vaccination of deer or cattle. To evaluate the efficacy of BCG vaccination in white-tailed deer, 35 deer were assigned to one of three groups; one s.c. dose of 107 CFU of M. bovis BCG Pasteur (n = 12); 1 s.c. dose of 107 CFU of M. bovis BCG Danish (n = 11); or unvaccinated deer (n = 12). After vaccination, deer were inoculated intratonsilarly with virulent M. bovis. Lesion severity scores of the medial retropharyngeal lymph node, as well as all lymph nodes combined, were reduced in vaccinated deer compared to unvaccinated deer. BCG Danish vaccinated deer had no late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli compared to BCG Pasteur vaccinated or unvaccinated deer where such lesions were present. Both BCG strains were isolated as late as 250 days after vaccination from deer that were vaccinated but not challenged. In white-tailed deer, BCG provides protection against challenge with virulent M. bovis. Issues related to vaccine persistence, safety and shedding remain to be further investigated.
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer in order to interrupt the cycle of deer to deer and deer to cattle transmission. Thirty-one white-tailed deer were assigned to one of three groups; 2 SC doses of 107 CFU of M. bovis BCG (n = 11); 1 SC dose of 107 CFU of M. bovis BCG (n = 10); or unvaccinated deer (n = 10). After vaccination, deer were inoculated intratonsilarly with 300 CFU of virulent M. bovis. Gross lesion severity scores of the medial retropharyngeal lymph node were significantly reduced in deer receiving 2 doses of BCG compared to unvaccinated deer. Vaccinated deer had fewer lymph node granulomas than unvaccinated deer, and most notably, fewer late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli. BCG was isolated from 7/21 vaccinated deer as long as 249 days after vaccination. In one case BCG was transmitted from a vaccinated deer to an unvaccinated deer. In white-tailed deer BCG provides measurable protection against challenge with virulent M. bovis. However, persistence of vaccine within tissues as well as shedding of BCG from vaccinates remain areas for further investigation.