2 resultados para Juvenile and Mature Wood

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyzed spatial location patterns of Cercocarpus ledifolius Nutt. (curlleaf mountain mahogany) plants, classified as current-year seedling, established seedling, juvenile, and immature individuals, at a central Nevada study site. Most current-year seedlings were located in mahogany stands in which large, mature individuals had the greatest abundance. These stands had greater litter cover and a thicker layer of litter than areas with few current- year seedlings. Most established young Cercocarpus were located in adjacent Artemisia tridentata ssp. vaseyana (mountain big sagebrush) communities, or in infrequent canopy gaps between relatively few large, mature Cercocarpus. We discuss potential roles of plant litter, root growth characteristics, nurse plants, and herbivory in the establishment and renewal of Cercocarpus communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade, leaf tatters has been reported in white oak and hackberry across several Midwestern states. Herbicide spray drift studies have shown that chloroacetamides can induce leaf tatters. The objectives of this research were to: 1) identify vulnerable bud developmental stages in hackberry and 2) determine if different commercial chloroacetamides affect severity of leaf tatters. In 2008, a preliminary spray drift experiment was conducted on mature trees from a former hackberry provenance test stand. Acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook) were applied at concentrations approximating 27%, 54%, 81%, or 108% of the recommended field rate. Three developmental stages before bud burst were present on the selected trees. Leaf tatters did not develop on the selected hackberry trees. However, symptoms were observed on neighboring, non-target hackberry trees, which had been in the leaf unfolding and expanding stages at the time of spraying. In 2009, three year old hackberry seedlings were treated with 1%, 10%, and 100% of the recommended field rate of acetochlor (Harness), S-metolachlor (Dual II Magnum), and dimethenamid (Outlook). Folded buds and two unfolding leaf developmental stages were present on seedlings. Another spray study was conducted on 32 mature hackberry trees from the provenance stand. A solution of 5608 mg a.i./L dimethenamid (Outlook) was applied to trees in the unfolding and/or expanding leaf stage. Treated trees represented four provenances. Image analysis was used to calculate seedling and mature tree leaf areas and estimate the seedling percentage of leaf tissue loss. Foliar damage was not significantly different between seedlings treated with water, 1%, or 10% of the field rate. Foliar damage was significantly different between seedlings treated with 1% or 100% of the field rate, and between seedlings treated with 10% or 100% of the field rate. Foliar damage in seedlings was not significantly different between the developmental stages. Additionally, symptoms of leaf tatters were observed on the treated mature hackberry. Future studies should focus on chloroacetamide concentrations above 10% of the recommended field rate.