3 resultados para Jülich-Berg

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly all biologic tissues exhibit viscoelastic behavior. This behavior is characterized by hysteresis in the response of the material to load or strain. This information can be utilized in extrapolation of life expectancy of vascular implant materials including native tissues and synthetic materials. This behavior is exhibited in many engineering materials as well such as the polymers PTFE, polyamide, polyethylene, etc. While procedures have been developed for evaluating the engineering polymers the techniques for biologic tissues are not as mature. There are multiple reasons for this. A major one is a cultural divide between the medical and engineering communities. Biomedical engineers are beginning to fill that void. A digitally controlled drivetrain designed to evaluate both elastic and viscoelastic characteristics of biologic tissues has been developed. The initial impetus for the development of this device was to evaluate the potential for human umbilical tissue to serve as a vascular graft material. The consequence is that the load frame is configured for membrane type specimens with rectangular dimensions of no more than 25mm per side. The designed load capacity of the drivetrain is to impose an axial load of 40N on the specimen. This drivetrain is capable of assessing the viscoelastic response of the specimens by four different test modes: stress relaxation, creep, harmonic induced oscillations, and controlled strain rate tests. The fluorocarbon PTFE has mechanical properties commensurate with vascular tissue. In fact, it has been used for vascular grafts in patients who have been victims of various traumas. Hardware and software validation of the device was accomplished by testing PTFE and comparing the results to properties that have been published by both researchers and manufacturers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coyote (Canis latrans) is among the most studied animals in North America. Because of its adaptability and success as a predator, the coyote has flourished and is still expanding its range. Coyotes can now be found throughout most of North America and south into Central America (Voight and Berg 1987). Studies in recent years have been extensive to understand the interrelationships of prey and coyotes (Shelton and Klindt 1974, Beckoff and Wells 1981), as well as demographic relationships (Davis et al. 1975, Knowlton and Stoddart 1978, Mitchell 1979, Bowen 1981) and feeding strategies (Todd and Keith 1976, Andelt et al. 1987, MacCracken and Hansen 1987, Gese et al. 1988a). With the advance of radio telemetry, researchers have investigated lifestyle characteristics spatially with home ranges or temporally with movements in relation to habitat requirements. Researchers have studied home ranges of coyotes in various regions of the United States (Livaitis and Shaw 1980, Andelt 1981, Springer 1982, Pyrah 1984, Gese et al. 1988a) and Canada (Bowen 1982). Some studies of home range were separated by season (Ozoga and Harger 1966) or relation to nearby food sources (Danner and Smith 1980). Home range analysis in relation to social interactions of coyotes has been either neglected, overlooked, or avoided. Gese et al. (1988a) recognized a transient class of coyote by home range size. Coyote social systems are very complex and can vary by season or locality in addition to some reports of group or pack systems (Hamlin and Schweitzer 1979, Beckoff and Wells 1981, Bowen 1981, Gese et al. 1988b). Coyotes maintain communication with conspecifics through vocal and olfactory signals (Lehner 1987, Bowen and McTaggert Cowan 1980). Social interactions may be by far the most complex and least understood aspect related to coyote ecology. Coyote movements can be related to many factors including food, water, cover, and social interactions. Movements in relation to food sources are well documented (Fitch 1948, Todd and Keith 1976, Danner and Smith 1980) although reports on movements in relation to water have not been reported, probably because of limited research in desert situations. There has been some mention of coyotes' movements in relation to cover (Wells and Beckoff 1982). The objectives of this study were to delineate annual and seasonal home ranges, movements, and habitat use of coyotes in the northern Chihuahuan desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outwitting Urban Beaver, by C. E. "Ki" Faulkner, Regional Director, Region 0, NADCA Bear Gets Attention in Southeast Chinese disease Threatens Rabbits Product Announcements: BEAR BE GONE™ -- a device designed to deter bears from foraging in trash cans. Booklet: "Using Guard Animals to Protect Livestock" Abstracts Published at the 3rd Annual Conference of The Wildlife Society: A case study of black bear movements and survival after landfill closure in the central Adirondacks, by Ann M. Russell and S.L. Simek Ecology of coyotes in a sheep ranching environment, by Ben N. Sacks, J.C.C. Neale, M. Jaeger, and D. R. McCullough Design and analysis of carnivore scent-station surveys, by Glen Sargeant, Douglas H. Johnson, and William Berg Public attitudes toward wildlife damage management, by Robert H. Schmidt, M.W. Brunson, andD. Reiter Human dimensions of wildlife contraception, by Robert H. Schmidt and D. E. Mclvor Economic assessment of rabies control efforts in Texas, by Randy M. Smith Methyl salicylate: a naturally occurring avian repellent, by Shirley Wager-Page A brief historical perspective on wildlife contraception research, by Robert J. Warren Wildlife-caused losses to agriculture in 1994, by Alice P. Wywialowski