3 resultados para Insects as carriers of plant disease
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Abstract. Based on prior field observations, we hypothesized that individual and interacting effects of plant size, density, insect herbivory, and especially fungal disease, influenced seedling and juvenile plant growth in native Platte thistle populations (Cirsium canescens Nutt.). We worked at Arapaho Prairie in the Nebraska Sandhills (May - August 2007), monitoring plant growth, insect damage, and fungal infection within different density thistle patches. In the main experiment, we sprayed half of test plants in different density patches with fungicide (Fungonil© Bonide, containing chlorothalonil) and half with a water control. Fungal infection rates were very low, so we found no difference in fungal attack between these treatments. However, plants that received the fungicide treatment had significantly faster growth over the season than did the control plants. At the same time, plants in the fungicide treatment had significantly reduced insect herbivory. These results strongly suggest that the fungicide had insecticidal effects and that insect herbivory significantly decreases juvenile Platte thistle growth. Further, damage by insect herbivores tended to be higher for larger plants, and herbivory was variable among different patches. However, plant density did not appear to have a large effect on the amount of insect herbivory that individual juvenile Platte thistle plants received. In the second experiment, we examined germination and survival success in relationship to seed density, and found that germination success was higher in areas of lower seed density. In the third experiment, we tested germination for filled seeds categorized primarily by color variation and size, and found no difference in germination related to either color or seed weight. We conclude that seed density, but not seed quality as estimated by color or size, affects germination success. Further, although herbivory was not significantly affected by plant density at any of the scales examined, insect herbivory significantly reduces the growth and success of juveniles of this characteristic native sand prairie plant.
Resumo:
The spread of wildlife diseases is a major threat to livestock, human health, resource-based recreation, and biodiversity conservation (Cleaveland, Laurenson, and Taylor). The development of economically sound wildlife disease-management strategies requires an understanding of the links between ecological functions (e.g., disease transmission and wildlife dispersal) and economic choices, and the associated tradeoffs. Spatial linkages are particularly relevant. Yet while ecologists have long-argued that space is important (Hudson et al.), prior economic work has largely ignored spatial issues. For instance, Horan and Wolf analyzed a case study of bovine tuberculosis (bTB) in Michigan deer, a problem where the disease appears to be confined to a single, spatially confined, wildlife population—an island. But wildlife disease matters generally are not spatially confined. Barlow, in analyzing bTB in possums in New Zealand, accounted for immigration of susceptible possums into a disease reservoir. However, he modeled immigration as fixed and unaffected by management. Bicknell, Wilen, and Howitt, also focusing on possums in New Zealand, developed a model that incorporates simple density-dependent net migration. This allowed the authors to account for endogenous immigration when deriving optimal culling strategies.
Resumo:
Bovine tuberculosis (BTB) was introduced into Swedish farmed deer herds in 1987. Epidemiological investigations showed that 10 deer herds had become infected (July 1994) and a common source of infection, a consignment of 168 imported farmed fallow deer, was identified (I). As trace-back of all imported and in-contact deer was not possible, a control program, based on tuberculin testing, was implemented in July 1994. As Sweden has been free from BTB since 1958, few practicing veterinarians had experience in tuberculin testing. In this test, result relies on the skill, experience and conscientiousness of the testing veterinarian. Deficiencies in performing the test may adversely affect the test results and thereby compromise a control program. Quality indicators may identify possible deficiencies in testing procedures. For that purpose, reference values for measured skin fold thickness (prior to injection of the tuberculin) were established (II) suggested to be used mainly by less experienced veterinarians to identify unexpected measurements. Furthermore, the within-veterinarian variation of the measured skin fold thickness was estimated by fitting general linear models to data (skin fold measurements) (III). The mean square error was used as an estimator of the within-veterinarian variation. Using this method, four (6%) veterinarians were considered to have unexpectedly large variation in measurements. In certain large extensive deer farms, where mustering of all animals was difficult, meat inspection was suggested as an alternative to tuberculin testing. The efficiency of such a control was estimated in paper IV and V. A Reed Frost model was fitted to data from seven BTB-infected deer herds and the spread of infection was estimated (< 0.6 effective contacts per deer and year) (IV). These results were used to model the efficiency of meat inspection in an average extensive Swedish deer herd. Given a 20% annual slaughter and meat inspection, the model predicted that BTB would be either detected or eliminated in most herds (90%) 15 years after introduction of one infected deer. In 2003, an alternative control for BTB in extensive Swedish deer herds, based on the results of paper V, was implemented.