2 resultados para Infraorbital margin
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The purpose of this paper is to provide quantitative fire history information for a geographically unique region, the Loess Hills of northwest Missouri. We sampled 33 bur oak (Quercus macrocarpa Michx.), chinkapin oak (Q. muehlenbergii Engelm.), and black oak (Q. velutina Lam.) trees from the Brickyard Hill Conservation Area in northwest Missouri. The period of tree-ring record ranged in calendar years from 1671 to 2004 and fire-scar dates (n = 97) ranged from 1672 to 1980. Fire intervals for individual trees ranged from 1 to 87 years. The mean fire interval was 6.6 years for the pre-Euro-American settlement period (1672-1820), and 5.2 years for the entire record (1672-1980). A period of more frequent fire (mean fire interval = 1.6 for 1825 to 1850) coincided with Euro-American settlement of the area. The average percentage of trees scarred at the site was 16.8%, or about 1 in 7 trees sampled per fire. No significant relationship between fire years and drought conditions was found; however, events prior to 1820 may have been associated with wet to dry mode transitions.
Resumo:
This study documents historic fire events at Capulin Volcano National Monument over the last four centuries using dendrochronologically dated fire scars at two sites: the lower volcano lava flows (the Boca) and the adjacent canyon slopes (Morrow Ranch). The mean fire interval (MFI) was 12 years at the Boca site (before 1890) and 5.4 years (1600-1750) and 19.1 years (1751-1890) at the Morrow Ranch site. Data from the Boca and Morrow Ranch sites combined with the extremely pyrogenic landscape position of the volcano slopes indicate that the volcano slopes likely burned more frequently (e.g., MFI <5 yr). Around 1750, the fire regime appeared to transition to longer fire intervals, greater temporal synchrony among fire-scarred trees, and a higher proportion of trees scarred in fire years. Temporal variability in the fire regime at Capulin Volcano may reflect changes in human populations, climate, and land use.