2 resultados para Identity by descent matrix
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Morishita’s “multiple analysis”of the whaling issue [Morishita J. Multiple analysis of the whaling issue: Understanding the dispute by a matrix. Marine Policy 2006;30:802–8] is essentially a restatement of the Government of Japan’s whaling policy, which confuses the issue through selective use of data, unsubstantiated facts, and the vilification of opposing perspectives. Here, we deconstruct the major problems with Morishita’s article and provide an alternative view of the whaling dispute. For many people in this debate, the issue is not that some whales are not abundant, but that the whaling industry cannot be trusted to regulate itself or to honestly assess the status of potentially exploitable populations. This suspicion has its origin in Japan’s poor use of science, its often implausible stock assessments, its insistence that culling is an appropriate way to manage marine mammal populations, and its relatively recent falsification of whaling and fisheries catch data combined with a refusal to accept true transparency in catch and market monitoring. Japanese policy on whaling cannot be viewed in isolation, but is part of a larger framework involving a perceived right to secure unlimited access to global marine resources. Whaling is inextricably tied to the international fisheries agreements on which Japan is strongly dependent; thus, concessions made at the IWC would have potentially serious ramifications in other fora.
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.