2 resultados para INTENSIVE GLUCOSE CONTROL
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The Animal Health Board (AHB) is the agency responsible for controlling bovine tuberculosis (Tb) in New Zealand. In 2000, the AHB embarked on a strategy designed to reduce the annual period prevalence of Tb infected cattle and farmed deer herds from 1.67% to 0.2% by 2012/13. Under current rules of the Office International des Epizooties (OIE) this would allow New Zealand to claim freedom from Tb. The epidemiology of Tb in New Zealand is largely influenced by wildlife reservoirs of infection and control of Tb vector populations is central to the elimination of Tb from New Zealand’s cattle and deer herds. The AHB has classified New Zealand’s land area into Vector Risk Areas (VRAs) where Tb is established in wildlife (currently 39%) and Vector Free Areas (VFAs) where the disease is not established (61%). Within the VRAs the introduced Australian brushtail possum (Trichosurus vulpecula) is the primary wildlife maintenance host and the main source of infection for domestic cattle and deer herds. Southland is a region of New Zealand with a long history of wildlife associated Tb. Progress in reducing infected herd numbers has been impressive in recent years, primarily due to an intensive possum control program. As a result of this reduction, the focus is now shifting to that of providing increasing levels of confidence that Tb is absent from the remaining susceptible wildlife. High levels of confidence of Tb freedom in wildlife will allow the AHB to reduce the wildlife control programs and ultimately cease control altogether, with minimal risk of Tb reemerging. This paper examines the strategies being utilized to provide that confidence. The types of data, the format in which it is collected and the methods of analysis and review are outlined.
Resumo:
As you can see from the general tenor of the printed program for this seminar, I am in the unenviable position of trying to discourage you from certain types of chemical control; but my assigned topic "Side Effects of Persistent Toxicants," implies that mission. However, my remarks may be somewhat anticlimax at this time, because it is now generally conceded that we need to reevaluate certain chemicals in control work and to restrict or severely curtail use of those that per¬sist for long periods in the environment. So let me detail my reasons for a somewhat negative attitude toward the use of the persistent hydrocarbons from my experience with the effects of these materials on birds. But first a few words of caution about control work in general, which so often disrupts natural processes and leads to new and unforseen difficulties. As an example, I think of the irruption of mice in the Klamath valley in northern California and southern Oregon in the late '50's. Intensive predator control, particularly of coyotes, but also of hawks and owls, was followed by a severe outbreak of mice in the spring of 1958. To combat the plague of mice, poisoned bait (1080 and zinc phosphide) was widely distributed in an area used by 500,000 waterfowl each spring. More than 3,000 geese were poisoned, so driv¬ing parties were organized to keep the geese off the treated fields. Here it seems conceivable that the whole chain of costly events--cost of the original and probably unnecessary predator control, economic loss to crops from the mouse outbreak, another poisoning campaign to combat the mice, loss of valuable waterfowl resources, and man-hours involved in flushing geese from the fields--might have been averted by a policy of not interfering with the original predator-prey relationship. This points to a dilemma we always face. (We create deplorable situations by clumsy interference with natural processes, then seek artificial cures to correct our mistakes.) For example, we spend millions of dollars in seeking cures for cancer, but do little or nothing about restricting the use of known or suspected carcinogens such as nicotine and DDT.