15 resultados para Humpback whate
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The great whales of the Southern Ocean were extensively exploited by modern whaling methods, with the first catches made in the Falkland Islands Dependencies region of IWC Management Area II in 1904 (Tønnesson and Johnsen, 1982; Hart, 2006). Exploitation went through several phases. Populations of humpback whales, Megaptera novaeangliae, and blue whales, Balaenoptera musculus, around South Georgia crashed around the time of World War I, and further exploitation occurred in other regions into the 1930’s. There was a hiatus in whaling during World War II, but large-scale catches resumed in Antarctic waters after 1945.
Resumo:
We review catches of humpback whales (Megaptera novaeangliae) in the Southern Ocean during the period following World War II, with an emphasis on Areas IV, V and VI (the principal regions of illegal Soviet whaling on this species). Where possible, we summarize legal and illegal Soviet catches by year, Area and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48702 and break down as follows: 649 (Area I), 1412 (Area II), 921 (Area III), 8779 (Area IV), 22569 (Area V) and 7195 (Area VI), with 7177 catches not assignable to area. In all, at least 72542 humpback whales were killed by all operations (Soviet plus other nations) after World War 2 in Areas IV (27201), V (38146) and VI (7195). More than a third of these (25474 whales, of which 25192 came from Areas V and VI) were taken in just two seasons, 1959/60 and 1960/61. The impact of these takes, and of those from Area IV in the late 1950's, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand and Norfolk Island. When compared to recent estimates of abundance, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.
Resumo:
The seasonal distributions of humpback and blue whales (Megaptera novaeangliae and Balaenoptera musculus, respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales’ migratory timing and routes.
Resumo:
From October 1996 through September 1998, we used bottom-mounted hydrophone arrays to monitor deep-water areas north and west of the British Isles for songs of humpback whales (Megaptera novaeangliae). Singing humpbacks were consistently detected between October and March from the Shetland- Faroe Islands south to waters west of the English Channel. Temporal and geographic patterns of song detections, and movements of individually tracked whales, exhibited a southwesterly trend over this period, but with no corresponding northward trend between April and September. These results, together with a review of historical data from this area, suggest that the offshore waters of the British Isles represent a migration corridor for humpbacks, at least some of which summer in Norwegian (and possibly eastern Icelandic) waters. The migratory destination of the detected animals remains unknown, but the limited data suggest that these whales are bound primarily for the West Indies rather than historical breeding areas off the northwestern coast of Africa. Humpbacks detected in British waters after early to mid- March probably do not undertake a full migration to the tropics. These data provide further evidence that singing is not confined to tropical waters in winter, but occurs commonly on migration even in high latitudes.
Resumo:
We describe a novel behavior, termed “tail-up,” observed in humpback whales (Megaptera novaeangliae) on wintering grounds on Abrolhos Bank, Brazil. The behavior involves the whale positioned vertically in the water column with its tail in the air. Wirh the exception of calves, tail-up was observed in all social classes, and its frequency increased through the end of the season. Tail-ups were recorded in 144 (5.8%) of 2,465 groups of whales observed from a shore station, and in 297 (14.9%) of 1,996 groups observed from vessel surveys; biases in each method suggest that the true frequency lies between these sources. One hundred and fifty-two hours of continuous sampling showed that the duration of tail-up events lasted from a few seconds to 12 min and was longest in groups comprised of a single adult. The maximum duration of a recorded period that consistently included tail-up was 10 h; however, some individuals were observed to engage in the behavior at night and for four consecutive days. Tail-up movement speed did not vary by social class; however, it varied according to wind direction and speed. The characteristics of tail-up that we observed showed that it differed from the descriptions of similar behaviors in other cetacean species. The function of tail-up is unknown, but we suggest that it may be a multifunctional behavior.
Resumo:
Results from a large-scale, capture–recapture study of humpback whales Megaptera novaeangliae in the North Atlantic show that migration timing is influenced by feeding ground origin. No significant differences were observed in the number of individuals from any feeding area that were re-sighted in the common breeding area in the West Indies. However, there was a relationship between the proportion (logit transformed) of West Indies sightings and longitude (r2 = 0.97, F1,3 = 98.27, P = 0.0022) suggesting that individuals feeding farther to the east are less likely to winter in the West Indies. A relationship was also detected between sighting date in the West Indies and feeding area. Mean sighting dates in the West Indies for individuals identified in the Gulf of Maine and eastern Canada were significantly earlier than those for animals identified in Greenland, Iceland and Norway (9.97 days, t179 = 3.53, P = 0.00054). There was also evidence for sexual segregation in migration; males were seen earlier on the breeding ground than were females (6.63 days, t105 = 1.98, P = 0.050). This pattern was consistently observed for animals from all feeding areas; a combined model showed a significant effect for both sex (F1 = 5.942, P = 0.017) and feeding area (F3 =4.756, P=0.0038). The temporal difference in occupancy of the West Indies between individuals from different feeding areas, coupled with sexual differences in migratory patterns, presents the possibility that there are reduced mating opportunities between individuals from different high latitude areas.
Resumo:
Knowledge of the local and migratory movements of humpback whales (Megaptera novaeangliae) from New Caledonia is very limited. To investigate this topic, we attached satellite-monitored tags to 12 whales off southern New Caledonia. Tag longevity ranged from 1 to 52 days (X = 22.5 days). Tagged whales generally moved to the south or southeast, with several spending time in a previously unknown seamount habitat named Antigonia before resuming movement, generally toward Norfolk Island or New Zealand. However, 1 female with a calf traveled the entire length of the western coast of New Caledonia (~450 km) and then west in the direction of the Chesterfield Reefs, a 19th century American (“Yankee”) whaling ground. None of the New Caledonia whales traveled to or toward eastern Australia, which is broadly consistent with the low rate of interchange observed from photo-identification comparisons between these 2 areas. The connections between New Caledonia and New Zealand, together with the relatively low numbers of whales seen in these places generally, support the idea that whales from these 2 areas constitute a single population that remains small and unrecovered.
Resumo:
A demographic model is developed based on interbirth intervals and is applied to estimate the population growth rate of humpback whales (Megaptera novaeangliae) in the Gulf of Maine. Fecundity rates in this model are based on the probabilities of giving birth at time t after a previous birth and on the probabilities of giving birth first at age x. Maximum likelihood methods are used to estimate these probabilities using sighting data collected for individually identified whales. Female survival rates are estimated from these same sighting data using a modified Jolly–Seber method. The youngest age at first parturition is 5 yr, the estimated mean birth interval is 2.38 yr (SE = 0.10 yr), the estimated noncalf survival rate is 0.960 (SE = 0.008), and the estimated calf survival rate is 0.875 (SE = 0.047). The population growth rate (l) is estimated to be 1.065; its standard error is estimated as 0.012 using a Monte Carlo approach, which simulated sampling from a hypothetical population of whales. The simulation is also used to investigate the bias in estimating birth intervals by previous methods. The approach developed here is applicable to studies of other populations for which individual interbirth intervals can be measured.
Resumo:
The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).
Resumo:
Most species of baleen whales were subject to intensive overexploitation by commercial whaling in this and previous centuries, and many populations were reduced to small fractions of their original sizes. Here, we review the status of baleen whale stocks, with an emphasis on those that are known or thought to be critically endangered. Current data suggest that, of the various threats potentially affecting baleen whales, only entanglement in fishing gear and ship strikes may be significant at the population level, and then only in those populations which are already at critically low abundance. The impact of some problems (vessel harassment, and commercial or aboriginal whaling) is at present probably minor. For others (contaminants, habitat degradation, disease), existing data either indicate no immediate cause for concern, or are insufficient to permit an assessment. While the prospect for many baleen whales appears good, there are notable exceptions; populations that are of greatest concern are those suffering from low abundance and associated problems, including (in some cases) anthropogenic mortality. These include: all Northern Right Whales Eubalaena glacialis, Bowhead Whales Balaena mysticetus of the Okhotsk Sea and various eastern Arctic populations, western Gray Whales Eschrichtius robustus, and probably many Blue Whale Balaenoptera musculus populations. We review the status of these populations and, where known, the issues potentially affecting their recovery. Although Humpback Whales Megaptera novaeangliae and Southern Right Whales Eubalaena australis were also heavily exploited by whaling, existing data indicate strong recovery in most studied populations of these species.
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents stock assessments for 13 Pacific marine mammal stocks under NMFS jurisdiction, including 8 “strategic” stocks and 5 “non-strategic” stocks (see summary table). A new stock assessment for humpback whales in American Samoa waters is included in the Pacific reports for the first time. New or revised abundance estimates are available for 9 stocks, including Eastern North Pacific blue whales, American Samoa humpback whales, five U.S. west coast harbor porpoise stocks, the Hawaiian monk seal, and southern resident killer whales. A change in the abundance estimate of Eastern North Pacific blue whales reflects a recommendation from the Pacific Scientific Review Group to utilize mark-recapture estimates for this population, which provide a better estimate of total population size than the average of recent line-transect and mark-recapture estimates. The ‘Northern Oregon/Washington Coast Stock’ harbor porpoise stock assessment includes a name change (‘Oregon’ is appended to ‘Northern Oregon’) to reflect recent stock boundary changes. Changes in abundance estimates for the two stocks of harbor porpoise that occur in Oregon waters are the result of these boundary changes, and do not reflect biological changes in the populations. Updated information on the three stocks of false killer whales in Hawaiian waters is also included in these reports. Information on the remaining 50 Pacific region stocks will be reprinted without revision in the final 2009 reports and currently appears in the 2008 reports (Carretta et al. 2009). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center (NWFSC, Seattle, WA). Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. National Marine Mammal Laboratory staff prepared the Northern Oregon/Washington coast harbor porpoise stock assessment. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for 9 stocks. The stock assessment for the American Samoa humpback whale was prepared by staff from the Center for Coastal Studies, Hawaiian Islands Humpback National Marine Sanctuary, the Smithsonian Institution, and the Southwest Fisheries Science Center. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the November 2008, Maui meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer to and cite original literature sources rather than citing this report or previous Stock Assessment Reports. If the original sources are not accessible, the citation should follow the format: [Original source], as cited in [this Stock Assessment Report citation].
Resumo:
Eighteen years after initiating scientific whaling in Antarctic waters, Japan presented a new and more ambitious program to the International Whaling Commission (IWC); the proposal was made in early June during the IWC’s annual meeting in Ulsan, Korea. Japan now wishes to more than double its annual catch of Antarctic minke whales (from about 440 to 935), and to expand lethal sampling to include an additional yearly take of 50 humpback and 50 fin whales. Unlike catches for commercial whaling, scientific catches are unregulated. Since 1987, Japan has taken some 6,800 minke whales from Antarctic waters, despite ongoing criticism of the relevance and direction of Japan’s research. The IWC was set up to regulate commercial whaling and to conserve whale populations, under the authority of the 1946 International Convention for the Regulation of Whaling. Following a well-documented failure of management that led to the collapse of most global whale populations, the IWC set a zero quota for commercial whaling (the moratorium). This was made effective from 1986. Norway, the former Soviet Union and Japan initially objected to the moratorium, but Japan withdrew its objection and ceased commercial whaling in 1988.
Resumo:
Studying the sociobiology and behavioral ecology of cetaceans is particularly challenging due in large part to the aquatic environment in which they live. Nevertheless, many of the obstacles traditionally associated with data gathering on tree-ranging whales, dolphins and porpoises are rapidly being overcome, and are now far less formidable. During the past several decades, marine mammal scientists equipped with innovative research methods and new technologies have taken field-based behavioral studies to a new level of sophistication. In some cases, as is true for bottlenose dolphins, killer whales, sperm whales and humpback whales, modern research paradigms in the marine environment are comparable to present-day studies of terrestrial mammal social systems. Cetacean Society stands testament to the relatively recent advances in marine mammal science, and to those scientists, past and present, whose diligence has been instrumental in shaping the discipline.
Resumo:
Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.
Resumo:
The study of a collection of cestodes assigned to the genus Diplogonoporus Lönnberg, 1892 disclosed but two species, D. balaenopterae Lönnberg, 1892, and D. tetrapterus (von Siebold, 1848) (provis.). These cestodes occur characteristically in marine mammals but occasionally are found in terrestrial hosts; D. balaenopterae is recorded for the first time from the domestic dog, and it is concluded that D. grandis (Blanchard, 1894), from man, is conspecific with D. balaenopterae. The latter species is recorded for the first time from the humpback whale, Megaptera novaeangliae (Borowski). The relatively small D. tetrapterus, a common parasite of the Steller sea lion, Eumetopias jubata (Schreber), is reported for the first time from the sea otter, Enhydra lutris Linnaeus, and from the domestic mink, Mustela vison Schreber. Descriptions of representative specimens are presented, and the taxonomic status of other species assigned to Diplogonoporus is discussed. Although the diplogonadic organization of these cestodes is somewhat variable, it is nevertheless constant and serves to characterize the genus Diplogonoporus. The process of asexual reproduction by means of transverse subdivision of primary segments is described. This ability and the diplogonadic structure of these cestodes are considered to be adaptations that increase the production of eggs and thereby the probability of reproductive success in the marine habitat.