6 resultados para Host-parasite relationships
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In Alaska, as in arctic and subarctic Eurasia, important natural-focal zoonoses are rabies, brucellosis, tularemia, trichinosis, alveolar hydatid disease, cystic hydatid disease, and diphyllobothriasis. Most frequently affected are aboriginal peoples in villages within biocenoses that include the natural parasite-host assemblages. Pathogens are transmitted to man from wild animals and from dogs, which are important as synanthropic hosts. The prevalence and rate of transmission of certain pathogens in natural foci are related to the numerical density of small mammals, especially rodents, which may themselves be involved as hosts, and on which the numbers of their predators ultimately depend, such as is evident in the natural cycles of Echinococcus multilocularis and of rabies virus. Some pathogens in northern regions exhibit biological Characteristics that separate them from morphologically indistinguishable strains at lower latitudes (e.g., Trichinella spiralis and E. granulosus). Host-parasite relationships may also differ, as in the Arctic where rabies virus is maintained in populations of foxes, without significant involvement of mammals of other groups. Faunal interchanges during and after the Pleistocene period have influenced the distribution of parasite-host assemblages in Alaska.
Resumo:
The helminths of North American mouse-like rodents have received little study. Previous work has been based on low numbers of animals examined, and there has been little reference to the ecology involved. The purpose of this paper is to present data resulting from the examination of over 600 voles, with special reference to host-parasite relationships
Resumo:
Calyptospora funduli has a broad host specificity, infecting at least 7 natural and 10 additional experimental definitive hosts, all atheriniform fishes within 5 families, but most in the genus Fundulus. Barriers, apparently innate ones, prevent any development of C. funduli in perciform fishes but allow incomplete or abnormal development of the parasite in a few unnatural atheriniform hosts. In the freshwater species Fundulus olivaceus and Fundulus notti, these abnormalities consisted of asynchronous development, degeneration of the parasite in early stages of development, and the formation of numerous macrophage aggregates. Rivulus marmoratus has the ability to eliminate infections with a granulomatous inflammatory response. Additional barriers that limit natural infections of C. funduli in other hosts include feeding behavior, environmental conditions, and geographic isolation.
Resumo:
In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment of infection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many of these topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in understanding the epizootiological aspects of any group of parasites. At the time Meyer's monograph was completed (1933), intermediate hosts were known for only 17 species of Acanthocephala, and existing descriptions are not sufficient to permit identification of two of those. Laboratory infections of intermediate hosts had apparently been produced for only two species. Study at that time was primarily devoted to species descriptions, host and geographical distribution, structure and ontogeny. Little or nothing was known about adaptations that promote transmission and the concept of paratenic hosts was unclear. In spite of the paucity of information, Meyer (1932) summarized pathways of transmission among principal groups of hosts, visualized the relationships among life cycle patterns for the major groups of Acanthocephala, and devised models for the hypothetical origin of terrestrial life cycles from aquatic ones. Nevertheless, most of our knowledge regarding epizootiology has been recently acquired.
Resumo:
Compatible with the biotic uniformity of northern regions, the occurrence of certain organisms which cause zoonotic diseases is general throughout the Arctic. In the past, most frequently affected by such diseases have been aboriginal peoples whose way of life involved encroachment upon naturally occurring parasite-host assemblages. Now, as changes take place in socioeconomic conditions in the Arctic, the importance of zoonotic diseases as a cause of morbidity may lessen among such peoples, but on the other hand, more nonaborigines may be affected. Although my remarks relate mainly to Alaska, again the biotic uniformity of the North seems to have its effect even with regard to man's activity, for similar changes are occurring throughout the arctic zone. Thus far, the natural environment has not been extensively disrupted at higher latitudes, and the arctic regions remain important for basic research in the natural history of zoonotic diseases. Because of the biotic peculiarities of these regions, conditions there especially favor the investigation of parasite-host relationships and the transmission of disease among the inhabitants. Significant benefit to the human population, in the temperate zone as well, can be expected to accrue from future studies in an undisturbed arctic wilderness.
Resumo:
Karyotypes are defined for two nearctic species of marmots, Marmota olympus (2n = 40) and M. vancouverensis (2n = 42), and supplemental information is included on the karyotypes of M. flaviventris, M. monax ochracea, and M. marmota. The six North American species of Marmota (NF = 66) comprise a distinct group as compared with the middle Asian species (NF = 70) for which the karyotypes are known. Karyologic findings and zoogeographic evidence based upon the distribution of two nearctic species of host-specific cestodes indicate that M. broweri, in northern Alaska, is a pre-Würm relict. Its affinities appear to be with the North American caligata-group rather than with the northeastern Siberian M. camtschatica. The occurrence on M. broweri of the Asian flea, Oropsylla silantiewi, has not been explained. Some ecological and behavioral characteristics of M. broweri are briefly described and compared with those of other species. Family groups of M. broweri hibernate together in single winter dens that are plugged at the entrance; copulation takes place before the animals emerge from the winter den, near mid-May; face-glands are utilized in marking of territory. French abstract: Les auteurs définissent les caryotypes de deux espèces néarctiques de marmottes, Marmota olympus (2n=40) et M. vancouverensis (2n=42), et donnent des précisions sur les caryotypes de M. flaviventris, M. monax ochracea et M. marmota. Les six especes de Marmota (NF=66) d'Amérique du Nord forment un groupe distinct des espèces d'Asie centrale (NF=70) dont Ie caryotype est connu. Les données caryologiques et les preuves zoogéographiques basées sur la répartition de deux espèces néarctiques de cestodes spécifiques de I'hôte démontrent que M. broweri, dans l'Alaska septentrional, est une relicte du pré-Würm. Elle semble avoir plus d'affinités avec Ie groupe nord américain de caligata qu'avec M. camtschatica du nord de la Sibérie. La présence sur M. broweri de la puce asiatique, Oropsylla silantiewi, n'est pas expliquée. Quelques caractéristiques écologiques et éthologiques de M. broweri sont décrites brièvement et comparées avec celles d'autres espèces. Les groupes familiaux de M. broweri hibernent dans un meme terrier dont l'entrée est bouchée; la copulation à lieu avant que les animaux sortent de leur abri hivernal, it la mi-mai ; ils se servent de leurs glandes faciales pour marquer leur territoire.