2 resultados para Hierarchical logistic model

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Translucent WDM optical networks use sparse placement of regenerators to overcome the impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks with much less cost. Our previous study proved the feasibility of translucent networks using sparse regeneration technique. We addressed the placement of regenerators based on static schemes allowing only fixed number of regenerators at fixed locations. This paper furthers the study by proposing a suite of dynamical routing schemes. Dynamic allocation, advertisement and discovery of regeneration resources are proposed to support sharing transmitters and receivers between regeneration and access functions. This study follows the current trend in optical networking industry by utilizing extension of IP control protocols. Dynamic routing algorithms, aware of current regeneration resources and link states, are designed to smartly route the connection requests under quality constraints. A hierarchical network model, supported by the MPLS-based control plane, is also proposed to provide scalability. Experiments show that network performance is improved without placement of extra regenerators.