4 resultados para Herring gull.

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spirocamallanus cricotus sp. n. (= S. pereirai, in part) and S. halitrophus sp. n. are described from marine fishes of the northern Gull of Mexico. Spirocamallanus cricotus has a ledge anterior to the basal ring in the buccal capsule, similar spicules with a ratio of 1:1.4 to 2.1, 3 pre- and 5 postcloacal papillae, and 8 rectal glands in the female; S. halitrophus lacks the ledge and possesses dissimilar spicules with a ratio of 1:1.3 to 1.8, 3 pre- and 6 postcloacal papillae, and 4 rectal glands in the female.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many bird species are attracted to landfills which take domestic or putrescible waste. These sites provide a reliable, rich source of food which can attract large concentrations of birds. The birds may cause conflicts with human interest with respect to noise, birds carrying litter off site, possible transmission of pathogens in bird droppings and the potential for birdstrikes. In the UK there is an 8 mile safeguarding radius around an airfield, within which any planning applications must pass scrutiny from regulatory bodies to show they will not attract birds into the area and increase the birdstrike risk. Peckfield Landfill site near Leeds, West Yorkshire was chosen for a trial of a netting system designed to exclude birds from domestic waste landfills. The site was assessed for bird numbers before the trial, during the netting trial and after the net had been removed. A ScanCord net was installed for 6 weeks, during which time all household waste was tipped inside the net. Gull numbers decreased on the site from a mean of 1074 per hourly count to 29 per hourly count after two days. The gull numbers increased again after the net had been removed. Bird concentrations in the surroundings were also monitored to assess the effect of the net. Bird numbers in the immediate vicinity of the landfill site were higher than those further away. When the net was installed, the bird concentrations adjacent to the landfill site decreased. Corvids were not affected by the net as they fed on covered waste which was available outside the net throughout the trial. This shows that bird problems on a landfill site are complex, requiring a comprehensive policy of bird control. A supporting bird scaring system and clear operating policy for sites near to airports would be required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bird-aircraft strikes at the Atlantic City International Airport (ACY) increased from 18 in 1989 to 37 in 1990. The number of bird-aircraft strikes involving gulls (Larus spp.) during this time rose from 6 to 27, a 350% increase. The predominant species involved in bird strikes was the laughing gull (L. atricilla). Pursuant to an interagency agreement between the U.S. Department of Transportation (USDOT), Federal Aviation Administration (FAA) and the U.S. Department of Agriculture (USDA)l Animal and Plant Health Inspection Service (APHIS)/Animal Damage Control (ADC), ADC established a Emergency/Experimental Bird Hazard Reduction Force (BHFF) at ACY in 1991. An Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) for the 1991 Emergency/Experimental BHRF was executed and signed by the FAA on 19 May 1991. The BHRF was adopted at this time by the FAA Technical Center as an annual program to reduce bird strikes at ACY. The BHRF goals are to minimize or eliminate the incidence of bird-aircraft strikes and runway closures due to increased bird activities. A BHRF team consisting of ADC personnel patrolled ACY for 95 days from 26 May until 28 August 1992, for a total of 2,949 person-hours. The BHRF used a combination of pyrotechnics, amplified gull distress tapes and live ammunition to harass gulls away from the airport from dawn to dusk. Gullaircraft strikes were reduced during BHRF operations in 1992 by 86% compared to gull strikes during summer months of 1990 when there was not a BHRF team. Runway closures due to bird activity decreased 100% compared to 1990 and 1991 closures. The BHRF should continue at ACY as long as birds are a threat to human safety and aircraft operations.