2 resultados para Hardware and Architecture
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Educational institutions of all levels invest large amounts of time and resources into instructional technology, with the goal of enhancing the educational effectiveness of the learning environment. The decisions made by instructors and institutions regarding the implementation of technology are guided by perceptions of usefulness held by those who are in control. The primary objective of this mixed methods study was to examine the student and faculty perceptions of technology being used in general education courses at a community college. This study builds upon and challenges the assertions of writers such as Prensky (2001a, 2001b) and Tapscott (1998) who claim that a vast difference in technology perception exists between generational groups, resulting in a diminished usefulness of technology in instruction. In this study, data were gathered through student surveys and interviews, and through faculty surveys and interviews. Analysis of the data used Kendall’s Tau test for correlation between various student and faculty variables in various groupings, and also typological analysis of the transcribed interview data. The analysis of the quantitative data revealed no relationship between age and perception of technology’s usefulness. A positive relationship was found to exist between the perception of the frequency of technology use and the perception of technology’s effectiveness, suggesting that both faculty members and students believed that the more technology is used, the more useful it is in instruction. The analysis of the qualitative data revealed that both faculty and students perceive technology to be useful, and that the most significant barriers to technology’s usefulness include faulty hardware and software systems,lack of user support, and lack of training for faculty. The results of the study suggest that the differences in perception of technology between generations that are proposed by Prensky may not exist when comparing adults from the younger generation with adults from the older generation. Further, the study suggests that institutions continue to invest in instructional technology, with a focus on high levels of support and training for faculty, and more universal availability of specific technologies, including web access, in class video, and presentation software. Adviser: Ronald Joekel
Resumo:
Nearly all biologic tissues exhibit viscoelastic behavior. This behavior is characterized by hysteresis in the response of the material to load or strain. This information can be utilized in extrapolation of life expectancy of vascular implant materials including native tissues and synthetic materials. This behavior is exhibited in many engineering materials as well such as the polymers PTFE, polyamide, polyethylene, etc. While procedures have been developed for evaluating the engineering polymers the techniques for biologic tissues are not as mature. There are multiple reasons for this. A major one is a cultural divide between the medical and engineering communities. Biomedical engineers are beginning to fill that void. A digitally controlled drivetrain designed to evaluate both elastic and viscoelastic characteristics of biologic tissues has been developed. The initial impetus for the development of this device was to evaluate the potential for human umbilical tissue to serve as a vascular graft material. The consequence is that the load frame is configured for membrane type specimens with rectangular dimensions of no more than 25mm per side. The designed load capacity of the drivetrain is to impose an axial load of 40N on the specimen. This drivetrain is capable of assessing the viscoelastic response of the specimens by four different test modes: stress relaxation, creep, harmonic induced oscillations, and controlled strain rate tests. The fluorocarbon PTFE has mechanical properties commensurate with vascular tissue. In fact, it has been used for vascular grafts in patients who have been victims of various traumas. Hardware and software validation of the device was accomplished by testing PTFE and comparing the results to properties that have been published by both researchers and manufacturers.