2 resultados para Ground-based tracking

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

New and improved strategies are needed for managing overabundant blackbird (Icteridae spp.) populations in some areas of the United States. From 2004 to 2007, we evaluated sodium lauryl sulfate (SLS) as a wetting agent during controlled outdoor cage and flight pen tests in Colorado and small-scale field tests at urban blackbird roosts in Missouri. In the outdoor cage tests (ambient temperature -5 to 2° C), mortality of male red-winged blackbirds (Agelaius phoeniceus) sprayed with 1, 2, and 5 ml of SLS on the back feathers only, on the breast feathers only, or on both breast and back feathers ranged from 25% to 100%. A SLS spray on male red-winged blackbirds at 2° C ambient temperature with 1 ml of SLS sprayed on breast feathers and back feathers resulted in 90% mortality in less than 60 minutes. In a flight pen test (-12 to -5° C ambient temperature ), SLS sprayed at 20 l per 3,400 l of water with a single ground-based sprinkler-head system over 35 male red-winged blackbirds roosting in cedar trees (Juniperus virginiana) resulted in 53% mortality. There was no mortality in the control group exposed to the same treatment without the SLS. Small-scale field tests conducted in Missouri at 6 sites with a single ground-based sprinkler-head spray system and at 2 sites with 4 sprinkler-head spray systems resulted in mortality that ranged from 0 to 4,750 and 4,500 to 15,000 blackbirds and starlings, respectively. Spray operations lasted from 28 to 208 minutes. Each spray covered about 200 m2 . At all sites, mortality of blackbirds sprayed with the SLS occurred as soon as 30 minutes post-SLS application. Mortality at two sites where pump problems precluded completing the spray ranged from 0 to 800 birds. Air leaving the system as the system was activated caused birds to flush from the roost trees. Poor water quality and pump durability were problems at some sites.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).