4 resultados para Ground control lines

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various nontarget species suggested that Richardson’s ground squirrels (Spermophilus richardsonii) may develop persistent infections when orally inoculated with the vaccine. In the present study, sRB51, B. abortus strain 19 (s19), and virulent B. abortus strain 9941 (s9941) were administered orally to Richardson’s ground squirrels to further characterize B. abortus infection in this species. Six groups of nongravid ground squirrels were orally inoculated with 6x108 colony forming units (cfu) sRB51 (n=10), 2.5x104 cfu s19 (n=10), 2.5x107 cfu s19 (n=6), 1.3x106 cfu s9941 (n=5), 2.1x108 cfu s9941 (n=5), or vaccine diluent (control; n=4). One of five animals in the lower-dose s19 group and two of three animals in the higher-dose s19 group showed persistence of bacteria in various tissues at 14 wk post-inoculation (PI). At 18 wk PI, one of five animals in the sRB51 group and one of five animals in the high-dose s9941 group were culture positive. Although we did detect some persistence of B. abortus strains at 18 wk, we found no evidence of pathology caused by B. abortus strains in nonpregnant Richardson’s ground squirrels based on clinical signs, gross lesions, and microscopic lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.