3 resultados para Greedy Algorithm.

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next-generation SONET metro network is evolving into a service-rich infrastructure. At the edge of such a network, multi-service provisioning platforms (MSPPs) provide efficient data mapping enabled by Generic Framing Procedure (GFP) and Virtual Concatenation (VC). The core of the network tends to be a meshed architecture equipped with Multi-Service Switches (MSSs). In the context of these emerging technologies, we propose a load-balancing spare capacity reallocation approach to improve network utilization in the next-generation SONET metro networks. Using our approach, carriers can postpone network upgrades, resulting in increased revenue with reduced capital expenditures (CAPEX). For the first time, we consider the spare capacity reallocation problem from a capacity upgrade and network planning perspective. Our approach can operate in the context of shared-path protection (with backup multiplexing) because it reallocates spare capacity without disrupting working services. Unlike previous spare capacity reallocation approaches which aim at minimizing total spare capacity, our load-balancing approach minimizes the network load vector (NLV), which is a novel metric that reflects the network load distribution. Because NLV takes into consideration both uniform and non-uniform link capacity distribution, our approach can benefit both uniform and non-uniform networks. We develop a greedy loadbalancing spare capacity reallocation (GLB-SCR) heuristic algorithm to implement this approach. Our experimental results show that GLB-SCR outperforms a previously proposed algorithm (SSR) in terms of established connection capacity and total network capacity in both uniform and non-uniform networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.