7 resultados para Gonadal contention

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadal maturation of cobia, Rachycentron canadum, was evaluated by examining 508 specimens from its recreational fishery. Specimens were collected off southeast Louisiana to northwest Florida by hook-and-line during February through October 1987-1991. Fork lengths (FL) of these fish ranged from 580-1,530 mm, with corresponding weights of 2.0-43.5 kg. The female:male ratio was 1:0.37. Using a combination of oocyte size frequency and histological assessment of many of the fish, we determined that females were ripe from May through September, with atretic oocytes occurring in some fish from July through October. Degenerating hydrated oocytes in July and October and the presence of resting ovaries in July suggest two major spawning periods; however, monthly gonosomatic indices peaking in May, followed by a steady decline, do not support that finding. Ovaries were placed into undeveloped, early developing, mid-developing, or late developing categories based upon oocyte size-frequency distributions. Developing ovaries had two or three modes of oocytes larger than 30 μm. Batch fecundity was estimated to be 2.6×106 - 1.91×108 oocytes, depending on the size of fish/ovaries. The smallest female with oocytes exhibiting vitellogenesis was 834 mm FL. This fish was 2 years old based its otolith evaluation. The smallest male with an abundance of spermatozoa in its testes was 640 mm FL and 1 year old based on otolith evaluation; smaller males were not examined. Females larger than 840 mm FL had vitellogenic oocytes in March and April. A few fish still had vitellogenic oocytes in early October, but none did by late October. When Gilson’s fluid was used to assess ovarian tissue, the fresh weight of the tissue was reduced by 20% after being stored for 3 months. The diameter of oocytes shrunk about 25% in Gilson’s fluid which was 11% less than those fixed in formalin, embedded in paraffin, and sectioned. Tissue sections from specific individuals, each demonstrating a variety of different developmental stages, were similar regardless of whether they were obtained from the anterior, middle, or posterior portion of either ovary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translucent wavelength-division multiplexing optical networks use sparse placement of regenerators to overcome physical impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks at a much less cost. In previous studies, we addressed the placement of regenerators based on static schemes, allowing for only a limited number of regenerators at fixed locations. This paper furthers those studies by proposing a dynamic resource allocation and dynamic routing scheme to operate translucent networks. This scheme is realized through dynamically sharing regeneration resources, including transmitters, receivers, and electronic interfaces, between regeneration and access functions under a multidomain hierarchical translucent network model. An intradomain routing algorithm, which takes into consideration optical-layer constraints as well as dynamic allocation of regeneration resources, is developed to address the problem of translucent dynamic routing in a single routing domain. Network performance in terms of blocking probability, resource utilization, and running times under different resource allocation and routing schemes is measured through simulation experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translucent WDM optical networks use sparse placement of regenerators to overcome the impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks with much less cost. Our previous study proved the feasibility of translucent networks using sparse regeneration technique. We addressed the placement of regenerators based on static schemes allowing only fixed number of regenerators at fixed locations. This paper furthers the study by proposing a suite of dynamical routing schemes. Dynamic allocation, advertisement and discovery of regeneration resources are proposed to support sharing transmitters and receivers between regeneration and access functions. This study follows the current trend in optical networking industry by utilizing extension of IP control protocols. Dynamic routing algorithms, aware of current regeneration resources and link states, are designed to smartly route the connection requests under quality constraints. A hierarchical network model, supported by the MPLS-based control plane, is also proposed to provide scalability. Experiments show that network performance is improved without placement of extra regenerators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

“It is my contention at this point that when race relations on campuses get better, it is in spite of, not because of, the proliferation of jargon-based rhetoric about diversity.”