3 resultados para Genetic algorithm
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.
Resumo:
Wavelength division multiplexing (WDM) offers a solution to the problem of exploiting the large bandwidth on optical links; it is the current favorite multiplexing technology for optical communication networks. Due to the high cost of an optical amplifier, it is desirable to strategically place the amplifiers throughout the network in a way that guarantees that all the signals are adequately amplified while minimizing the total number amplifiers being used. Previous studies all consider a star-based network. This paper demonstrates an original approach for solving the problem in switch-based WDM optical network assuming the traffic matrix is always the permutation of the nodes. First we formulate the problem by choosing typical permutations which can maximize traffic load on individual links; then a GA (Genetic Algorithm) is used to search for feasible amplifier placements. Finally, by setting up all the lightpaths without violating the power constaints we confirm the feasibility of the solution.
Resumo:
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.