3 resultados para Functions graph

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One problem with using component-based software development approach is that once software modules are reused over generations of products, they form legacy structures that can be challenging to understand, making validating these systems difficult. Therefore, tools and methodologies that enable engineers to see interactions of these software modules will enhance their ability to make these software systems more dependable. To address this need, we propose SimSight, a framework to capture dynamic call graphs in Simics, a widely adopted commercial full-system simulator. Simics is a software system that simulates complete computer systems. Thus, it performs nearly identical tasks to a real system but at a much lower speed while providing greater execution observability. We have implemented SimSight to generate dynamic call graphs of statically and dynamically linked functions in x86/Linux environment. A case study illustrates how we can use SimSight to identify sources of software errors. We then evaluate its performance using 12 integer programs from SPEC CPU2006 benchmark suite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppliers of water and energy are frequently natural monopolies, with their pricing regulated by governmental agencies. Pricing schemes are evaluated by the efficiency of the resource allocation they lead to, the capacity of the utilities to capture their costs and the distributional effects of the policies, in particular, impacts on the poor. One pricing approach has been average cost pricing, which guarantees cost recovery and allows utilities to provide their product at relatively low prices. However, average cost pricing leads to economically inefficient consumption levels, when sources of water and energy are limited and increasing the supply is costly. An alternative approach is increasing block rates (hereafter, IBR or tiered pricing), where individuals pay a low rate for an initial consumption block and a higher rate as they increase use beyond that block. An example of IBR is shown in Figure 1 (on next page), which shows a rate structure for residential water use. With the rates in Figure 1, a household would be charged $0.46 and $0.71 per hundred gallons for consumption below and above 21,000 gallons per month, respectively.