2 resultados para Full bridge converters
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
There is a growing recognition among wildlife managers that focusing management on wildlife often provides a temporary fix to human–wildlife conflicts, whereas changing human behavior can provide long-term solutions. Human dimensions research of wildlife conflicts frequently focuses on stakeholders’ characteristics, problem identification, and acceptability of management, and less frequently on human behavior and evaluation of management actions to change that behavior. Consequently, little information exists to assess overall success of management. We draw on our experience studying human–bear conflicts, and argue for more human dimensions studies that focus on change in human behavior to measure management success. We call for help from social scientists to conduct applied experiments utilizing two methods, direct observation and self-reported data, to measure change in behavior. We are optimistic these approaches will help fill the managers’ tool box and lead to better integration of human dimensions into human–wildlife conflict management.
Resumo:
For many years AASHTO provided no recommendation to state DOT’s on bottom flange confinement reinforcement for their bridge superstructures. The 1996 edition of AASHTO Standard Specification for Highway Bridges stated that nominal reinforcement be placed to enclose the prestressing steel from the end of the girder for at least a distance equal to the girder’s height. A few years later the 2004 AASHTO LRFD Bridge Design Specification changed the distance over which the confinement was to be distributed from 1.0h to 1.5h, and gave minimum requirements for the amount of steel to be used, No.3 bars, and their maximum spacing, not to exceed 6”. Research was undertaken to study what impact, if any, confinement reinforcement has on the performance of prestressed concrete bridge girders. Of particular interest was the effect confinement had on the transfer length, development length, and vertical shear capacity of the fore mentioned members. First, an analytical investigation was performed on the subject, and then an experimental investigation followed which consisted of designing, fabricating, and testing eight tee-girders and three NU1100 girders with particular attention paid to the amount and distribution of confinement reinforcement placed at the end of each girder. The results of the study show: 1) neither the amount or distribution of confinement reinforcement had a significant effect on the initial or final transfer length of the prestress strands; 2) at the AASHTO calculated development length, no significant impact from confinement was found on either the nominal flexural capacity of bridge girders or bond capacity of the prestressing steel; 3) the effects from varied confinement reinforcement on the shear resistance of girders tested was negligible, however, distribution of confinement did show to have an impact on the prestressed strands’ bond capacity; 4) confinement distribution across the entire girder did increase ductility and reduced cracking under extreme loading conditions.