3 resultados para Fuel fabrication

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research has provided no definitive answers on whether PET plastic bottles or aluminum cans are a more environmentally sustainable choice as soda containers. This paper researches the fuel used in recycling each of these materials from Yellowstone National Park to processing locations. The data is used to determine which of these alternatives use less fuel in this process. It was found that plastics use more fuel when transported from Yellowstone National Park to the processing center. Aluminum uses less fuel per ton to transport from Yellowstone to the processing center. The conclusions from this research may have implications on which material would be advised to use in selling soda in Yellowstone National Park.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triglycerides are reacted in a liquid phase reaction with methanol and a homogeneous basic catalyst. The reaction yields a spatially separated two phase result with an upper located non-polar phase consisting principally of non-polar methyl esters and a lower located phase consisting principally of glycerol and residual methyl esters. The glycerol phase is passed through a strong cationic ion exchanger to remove anions, resulting in a neutral product which is flashed to remove methanol and which is reacted with isobutylene in the presence of a strong acid catalyst to produce glycerol ethers. The glycerol ethers are then added back to the upper located methyl ethyl ester phase to provide an improved biodiesel fuel.