4 resultados para Frictional Contact Between Deformable Bodies
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of <24 h, whereas rotational grazing involved access to whole fields for 1 to 7 d each. A higher proportion of the herd investigated badger latrines than crossing points or controls. Cattle initially avoided swards around badger latrines but not around crossing points. Avoidance periods were shorter in strip- compared with rotation-grazing systems. In rotation-grazing management, latrines were avoided for longer times, but there were more investigative contacts than with strip-grazing management. If investigation is a major route of tuberculosis transmission, the risk to cattle is greatest in extensive rotation-grazing systems. However, if ingestion of fresh urine is the primary method of transmission, strip-grazing management may pose a greater threat. Farming systems affect the level and type of contact between livestock and wildlife excreta and thus the risks of disease.
Resumo:
1. Hydatid cysts are found in more than 30 per cent of all cattle, sheep and goats in Kenya, but the disease is prevalent in man only in the semi-desert area of Turkana. Up to the time of the present investigation the life-cycle of the parasite in East Africa had not been studied, but it was suggested that wild carnivores, such as hyenas and jackals, might be the main hosts of the adult worms. 2. One hundred and forty-three carnivores, representing 23 species, have been examined. Echinococcus adults were found in 27 out of 43 domestic dogs (Canis familiaris), in three out of four hunting dogs (Lycaon pictus), in one out of nine jackals (Thos mesomelas), and in three out of 19 hyaenas (Crocuta crocuta). 3. A detailed morphological study was made of the Kenya material. After comparison with specimens from other parts of the world, it was concluded that the only species occurring in Kenya was E. granulosus, but it is possible that the minor morphological and biological differences are evidence of distinct strains. Further laboratory studies are necessary to compare the parasite from man and animals in different parts of Kenya with material from elsewhere. 4. A search was made for larval hydatids in 92 ungulates representing 18 species, and in a miscellaneous collection of nearly 2,000 rodents and primates representing a further 31 species. Only one animal was positive, a wildebeest (Gorgon taurinus). 5. The infections in the wild carnivores were all very light; only domestic dogs were heavily infected. It is concluded that the main cycle of transmission in Kenya is between dogs and domestic livestock. 6. Turkana tribesmen are the most heavily infected people in Kenya, either because the strain of parasite is more pathogenic to man in that area, or, more probably, because of the intimate contact between children and the large number of infected dogs. A particularly dangerous custom in the area is the use of dogs to clean the face and anal regions of babies when they vomit or have diarrhea. No satisfactory explanation can be given for the rarity of the disease in man in many of the other areas of Kenya where hydatids are very common in domestic animals. 7. The control of the disease will depend upon an active health-education campaign, together with the destruction of all unregistered dogs and improvement in meat hygiene.
Resumo:
The expansion of the cellulosic biofuels industry throughout the United States has broad-scale implications for wildlife management on public and private lands. Knowledge is limited on the effects of reverting agriculture to native grass, and vice versa, on size of home range and habitat use of white-tailed deer (Odocoileus virginianus). We followed 68 radio-collared female deer from 1991 through 2004 that were residents of DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska, USA. The refuge was undergoing conversion of vegetation out of row-crop agriculture and into native grass, forest, and emergent aquatic vegetation. Habitat in DNWR consisted of 30% crop in 1991 but removing crops to establish native grass and wetland habitat at DNWR resulted in a 44% reduction in crops by 2004. A decrease in the amount of crops on DNWR contributed to a decline in mean size of annual home range from 400 ha in 1991 to 200 ha in 2005 but percentage of crops in home ranges increased from 21% to 29%. Mean overlap for individuals was 77% between consecutive annual home ranges across 8 years, regardless of crop availability. Conversion of crop to native habitat will not likely result in home range abandonment but may impact disease transmission by increasing rates of contact between deer social groups that occupy adjacent areas. Future research on condition indices or changes in population parameters (e.g., recruitment) could be incorporated into the study design to assess impacts of habitat conversion for biofuel production.
Resumo:
Disease transmission between wildlife and livestock is a worldwide issue. Society needs better methods to prevent interspecies transmission to reduce disease risks. Producers have successfully used livestock protection dogs (LPDs) for thousands of years to reduce predation. We theorized that LPDs raised and bonded with cattle could be used to also reduce risk of bovine tuberculosis (Myobacterium bovis; TB) transmission between white-tailed deer (Odocoileus virginianus) and cattle by minimizing contact between the 2 species and use of cattle feed by deer. We evaluated 4 LPDs over 5 months, utilizing 2 data collection methods (direct observation and motion-activated video) on deer farms that supported higher densities than wild populations. Dogs were highly effective in preventing deer from using concentrated cattle feed (hay bales), likely the greatest risk factor of TB transmission on farms. Dogs also prevented deer from approaching cattle in core areas of pastures (near hay bales) and were very effective throughout pastures. Our research supports the theory that LPDs, specifically trained to remain with cattle, may be a practical tool to minimize potential for livestock to contract TB from infected deer in small-scale cattle operations. Where disease is present in deer, it may be possible to reduce the potential for disease transmission by employing LPDs.