2 resultados para Four main Tobacco Manufacturers

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.