12 resultados para Forestry pest management
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
It is my very great pleasure to welcome each of you to the 14th annual Urban Pest Management Conference. I want you to know that we in the Institute of Agriculture and Natural Resources take seriously our role as partners with Nebraska. We are especially pleased for the partnerships we have with your industry.
Resumo:
It is my very great pleasure to welcome each of you to this 16th Annual Nebraska Urban Pest Management Conference here in Lincoln. I'm John Owens, University of Nebraska Vice President and Harlan Vice Chancellor of the Institute of Agriculture and Natural Resources, and I am so glad to be here with you this morning. As an entomologist, this conference certainly is one for which I have great affinity and much interest.
Resumo:
A mail survey was conducted to assess current computer hardware use and perceived needs of potential users for software related to crop pest management in Nebraska. Surveys were sent to University of Nebraska-Lincoln agricultural extension agents, agribusiness personnel (including independent crop consultants), and crop producers identified by extension agents as computer users. There were no differences between the groups in several aspects of computer hardware use (percentage computer use, percentage IBM-compatible computer, amount of RAM memory, percentage with hard drive, hard drive size, or monitor graphics capability). Responses were similar among the three groups in several areas that are important to crop pest management (pest identification, pest biology, treatment decision making, control options, and pesticide selection), and a majority of each group expressed the need for additional sources of such information about insects, diseases, and weeds. However, agents mentioned vertebrate pest management information as a need more often than the other two groups. Also, majorities of each group expressed an interest in using computer software, if available, to obtain information in these areas. Appropriate software to address these needs should find an audience among all three groups.
Resumo:
Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management.
Resumo:
The Pest Management Strategy for Bovine Tuberculosis (Tb) in New Zealand aims to achieve efficient freedom from Tb by 2013 and to eradicate the disease from livestock and wildlife. The West Taupo area, in the central North Island of New Zealand, was chronically infected with Tb in both domestic livestock herds (cattle and deer) and within wildlife populations (brushtail possum, ferret, feral deer and pigs). Through the development and implementation of a technically innovative management plan, this area is now approaching Tb free status. The case study / management plan reported here discusses the operational techniques and strategies that were implemented to achieve Tb clearance in the livestock herds and the possibilities of eradication from wildlife species. It particularly identifies the variations in control strategies that are required as population densities reduce and the challenges of maintaining strong effective control at low densities of some wildlife species, whilst not needing to control other species that were initially clinically diagnosed with Tb control. Use of diagnostic tools and education as an area moves through the cycle towards Tb freedom are as essential as the physical control activities. The use of intensive monitoring of both livestock and wildlife species as trend and performance indicators and the need to educate farmers, hunters and other land use groups become increasingly important.
Resumo:
In 1986, the U.S. Environmental Protection Agency (EPA) initiated an effort to comply more fully with the Endangered Species Act. This effort became their "Endangered Species Protection Program." The possibility of such a program was forecast in 1982 when Donald A. Spencer gave a presentation to the Tenth Vertebrate Pest Conference on "Vertebrate Pest Management and Changing Times." This paper focuses on current plans for implementing the EPA's Endangered Species Protection Program as it relates to the USDA Forest Service. It analyzes the potential effects this program will have on the agency, using the pocket gopher (Thomomys spp.), strychnine, and the grizzly bear (Ursus arctos horribilis) as examples of an affected pest, pesticide, and predator.
Resumo:
Abstract Emerald Ash Borer (Agrilus planipennis) (EAB) is an invasive insect pest. It feeds on the cambium tissues of ash tree species. It was first discovered in the United States in 2002 in Detroit, Michigan. Their effects on ash trees are deadly, and it is quickly spreading across the Midwest. Nebraska has not yet been invaded, but confirmed findings continue getting closer and closer. The major problem facing Nebraskans, with regards to EAB, is how to begin preparations to prevent a dramatic economic loss when an infestation does occur. So, to address this problem, I have conducted street and park tree inventories, to determine the amount of ash trees that are contained in Nebraska’s community forests; and with that data I have attempted to create a possible EAB action plan for Nebraska communities. Based on inventory findings, I have calculated that 6% of Nebraska’s community trees are ash, which is a large percentage. Then, I proposed a plan of action for communities that involve planting a diverse landscape, and a combination of ash replacement programs, and treatment for ash that are less valuable or damaged.
Resumo:
We are living in a day of change. Environmental awareness is a part of our everyday life in a way unprecedented in history. The courts, in their infinite wisdom, have initiated the joint and several liability (deep pocket) rules that make everyone at risk in almost all situations. Bird management programs, by their very nature, are extremely sensitive. Any project, if not evaluated, planned, carried out, and documented properly can result in adverse regulatory agency action, bad publicity, and even fines or lawsuits. Proper photographic documentation can play a vital part in helping to provide the necessary records to help prevent problems and/or defend yourself in case of lawsuit or regulatory action. In the preparation of this paper, we surveyed state pesticide lead agencies, state Department of Conservation (Fish and Wildlife) agencies, some U.S. Fish and Wildlife Law Enforcement personnel, and several individuals to get their reaction to and their comments about this concept of supplemental recordkeeping. Of those responding, a majority thought the concept of supplemental photographic recordkeeping would be an asset to individuals and organi¬zations conducting bird management projects.
Resumo:
The wildlife in Japan does more damage in outbreaks in forestry than in agriculture. Hares annually damage in excess of 250 thousand acres. Voles annually damage 50 to 100 thousand acres; in some areas great damage may occur suddenly. The giant flying squirrel damages areas of replanted trees in southern areas of Japan. The Himalayan black bear strips the bark on tree trunks. In agriculture, the sparrow and the duck do an excessive amount of damage in rice fields, and the boar does conspicuous harm in the plowed fields of mountain villages. In Okinawa, sugar cane is attacked by Rattus rattus, and in some years the loss is severe. Of even greater concern is the damage done by introduced vertebrates. The gem-faced civet was imported from Taiwan. Similarly introduced from Taiwan, the tree squirrel increased on Izu-Oshima. The nutria was introduced in 1940; they escaped from cages in Southern Honshu and have increased.
Resumo:
As a nation we have gained world recognition for our ability to utilize our resources. In forestry our greatest accomplishments have been in the mechanization of harvest methods and in improvements in forest products. The renewal of this resource has been our greatest neglect. Though the end of the 19th Century marked the beginning of the conservation movement, it was not until a half century later that the force of economics through the demands of a growing population made forest re-establishment more than just a desire. Conservation in itself is a Utopian concept which requires other motivating forces to make it a reality. In the post-war years, and as late as the early 195O's, stocked land in the Pacific Northwest could be purchased for less than the cost of planting; the economic incentive was lacking. Only with sustained yield management and increased land values was there a balance in favor of true values. With greater effort placed on forest regeneration there was an increased need for methods of reducing losses to wildlife. The history of forest wildlife damage research, therefore, parallels that of forest land management; after rather austere beginnings, development became predominantly a response to economics. It was not until 1950 that the full time of one scientist was assigned to this important activity. The development of control methods for forest animal damage is a relatively new area of research. All animal life is dependent upon plants for its existence; forest wildlife is no exception. The removal of seed and foliage of undesirable plants often benefits the land managers; only when the losses or injuries are in conflict with man's interest is there damage involved. Unfortunately, the feeding activities of wildlife and the interests of the land managers are often in conflict. Few realize the breadth, scope, and subtilities associated with forest wildlife damage problems. There are not only numerous species of animals involved, but also a myriad of conditions, each combination possessing unique facets. It is a foregone conclusion that an understanding of the conditions is essential to facilitate a solution to any given problem. Though there are numerous methods of reducing animal damage, all of which have application under some situations, in this discussion emphasis will be placed on the role of chemicals and on western problems. Because of the broadness and complexity of the problem, generalizing is necessary and only brief coverage will be possible. However, an attempt will be made to discuss the use and limitations of various control methods.
Resumo:
In the first paper presented to you today by Dr. Spencer, an expert in the Animal Biology field and an official authority at the same time, you heard about the requirements imposed on a chemical in order to pass the different official hurdles before it ever will be accepted as a proven tool in wildlife management. Many characteristics have to be known and highly sophisticated tests have to be run. In many instances the governmental agency maintains its own screening, testing or analytical programs according to standard procedures. It would be impossible, however, for economic and time reasons to work out all the data necessary for themselves. They, therefore, depend largely on the information furnished by the individual industry which naturally has to be established as conscientiously as possible. This, among other things, Dr. Spencer has made very clear; and this is also what makes quite a few headaches for the individual industry, but I am certainly not speaking only for myself in saying that Industry fully realizes this important role in developing materials for vertebrate control and the responsibilities lying in this. This type of work - better to say cooperative work with the official institutions - is, however, only one part and for the most of it, the smallest part of work which Industry pays to the development of compounds for pest control. It actually refers only to those very few compounds which are known to be effective. But how to get to know about their properties in the first place? How does Industry make the selection from the many thousands of compounds synthesized each year? This, by far, creates the biggest problems, at least from the scientific and technical standpoint. Let us rest here for a short while and think about the possible ways of screening and selecting effective compounds. Basically there are two different ways. One is the empirical way of screening as big a number of compounds as possible under the supposition that with the number of incidences the chances for a "hit" increase, too. You can also call this type of approach the statistical or the analytical one, the mass screening of new, mostly unknown candidate materials. This type of testing can only be performed by a producer of many new materials,that means by big industries. It requires a tremendous investment in personnel, time and equipment and is based on highly simplified but indicative test methods, the results of which would have to be reliable and representative for practical purposes. The other extreme is the intellectual way of theorizing effective chemical configurations. Defenders of this method claim to now or later be able to predict biological effectiveness on the basis of the chemical structure or certain groups in it. Certain pre-experience should be necessary, that means knowledge of the importance of certain molecular requirements, then the detection of new and effective complete molecules is a matter of coordination to be performed by smart people or computers. You can also call this method the synthetical or coordinative method.
Resumo:
It may be useful to review some of the considerations that go into recommendations concerning bird management. Later I will make some comments concerning specific methods and devices being used in or promoted for bird control work regardless of whether or not they are new. Members of the National Pest Control Association provide a variety of services, such as fumigation, termite control and general pest control which includes rodent control. There are eight such categories listed in our roster, but only one member in five provides every service listed. Bird control is a rather recent development and is the newest category of service to be listed in the NPCA roster where it appeared for the first time in 1959. As of September 1, 1966, 45% of our members' offices indicated that they were prepared to offer bird control service. Less than 40% did so in 1964. Why is it that more of our members do not declare themselves as ready to do bird control work? I believe the most common answer you would find is that bird control is not yet sufficiently established that they can provide a service comparable in quality to that which is provided against termites or cockroaches or rats. Our members simply do not want to jeopardize their reputation on methods that are not certain or are too complex. Others recognize the emotional reaction evidenced by much of the population concerning control of birds and do not want to become involved in work that might offend some of their clientele. Still others simply do not agree that birds are their responsibility.