3 resultados para Fixed Block size Transform Coding

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protecting a network against link failures is a major challenge faced by network operators. The protection scheme has to address two important objectives - fast recovery and minimizing the amount of backup resources needed. Every protection algorithm is a tradeoff between these two objectives. In this paper, we study the problem of segment protection. In particular, we investigate what is the optimal segment size that obtains the best tradeoff between the time taken for recovery and minimizing the bandwidth used by the backup segments. We focus on the uniform fixed-length segment protection method, where each primary path is divided into fixed-length segments, with the exception of the last segment in the path. We observe that the optimal segment size for a given network depends on several factors such as the topology and the ratio of the costs involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical nonmicellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Concentration-dependent pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size, and ratio. The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures and association properties of thermosensitive block copolymers of poly(methoxyoligo( ethylene glycol) norbornenyl esters) in D2O were investigated by small angle neutron scattering (SANS). Each block is a comblike polymer with a polynorbornene (PNB) backbone and oligo ethylene glycol (OEG) side chains (one side chain per NB repeat unit). The chemical formula of the block copolymer is (OEG3NB) 79- (OEG6.6NB) 67, where subscripts represent the degree of polymerization (DP) of OEG and NB in each block. The polymer concentration was fixed at 2.0 wt % and the structural changes were investigated over a temperature range between 25 and 68°C. It was found that at room temperature polymers associate to form micelles with a spherical core formed by the block (OEG3NB) 79 and corona formed by the block (OEG6.6NB) 67 and that the shape of the polymer in the corona could be described by the form factor of rigid cylinders. At elevated temperatures, the aggregation number increased and the micelles became more compact. At temperatures around the cloud point temperature (CPT) T ) 60 °C a correlation peak started to appear and became pronounced at 68 °C due to the formation of a partially ordered structure with a correlation length ∼349 Å.