7 resultados para Fish and shrimp
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
I guess the impetus for laws in our state, really was the action of the city of Boston in 1963, when the Parks and Recreation Department felt that it was time to do something about massive populations of pigeons on the Boston Commons and in the city. The Parks Department came to our agency to find out what could be done. We immediately found as a result of a reorganization and recodification of the laws some 20 years before, that it was illegal to use or apply poisons for the purpose of killing any birds or mammals in the Commonwealth of Massachusetts. Property owners were given the privilege to destroy animals that were doing damage to their property, but only through mechanical means, certainly not by the use of toxicants. We helped the city of Boston draft a bill in 1963, which allowed our agency, the Division of Fisheries and Game, the agency responsible for all wildlife species in the state, the opportunity to issue certain permits for the use of poison, giving full authority to the director of Fisheries and Game with, of course, approval of my board. This allowed certain discretion on our part.
Resumo:
The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).
Resumo:
Central-place foragers that must return to a breeding site to deliver food to offspring are faced with trade-offs between prey patch quality and distance from the colony. Among colonial animals, pinnipeds and seabirds may have different provisioning strategies, due to differences in their ability to travel and store energy. We compared the foraging areas of lactating Antarctic fur seals and chinstrap penguins breeding at Seal Island, Antarctica, to investigate whether they responded differently to the distribution of their prey (Antarctic krill and myctophid fish) and spatial heterogeneity in their habitat. Dense krill concentrations occurred in the shelf region near the colony. However, only brooding penguins, which are expected to be time-minimizers because they must return frequently with whole food for their chicks, foraged mainly in this proximal shelf region. Lactating fur seals and incubating penguins, which can make longer trips to increase energy gain per trip, and so are expected to be energy-maximizers, foraged in the more distant (>20 km from the island) slope and oceanic regions. The shelf region was characterized by more abundant, but lower-energy-content immature krill, whereas the slope and oceanic regions had less abundant but higher-energy-content gravid krill, as well as high-energy-content myctophids. Furthermore, krill in the shelf region undertook diurnal vertical migration, whereas those in the slope and oceanic regions stayed near the surface throughout the day, which may enhance the capture rate for visual predators. Therefore, we sug- gest that the energy-maximizers foraged in distant, but potentially more profitable feeding regions, while the time-minimizers foraged in closer, but potentially less profitable regions. Thus, time and energy constraints derived from different provisioning strategies may result in sympatric colonial predator species using different foraging areas, and as a result, some central-place foragers use sub- optimal foraging habitats, in terms of the quality or quantity of available prey.
Resumo:
Polymerase chain reaction techniques were developed and applied to identify DNA from .40 species of prey contained in fecal (scat) soft-part matrix collected at terrestrial sites used by Steller sea lions (Eumetopias jubatus) in British Columbia and the eastern Aleutian Islands, Alaska. Sixty percent more fish and cephalopod prey were identified by morphological analyses of hard parts compared with DNA analysis of soft parts (hard parts identified higher relative proportions of Ammodytes sp., Cottidae, and certain Gadidae). DNA identified 213 prey occurrences, of which 75 (35%) were undetected by hard parts (mainly Salmonidae, Pleuronectidae, Elasmobranchii, and Cephalopoda), and thereby increased species occurrences by 22% overall and species richness in 44% of cases (when comparing 110 scats that amplified prey DNA). Prey composition was identical within only 20% of scats. Overall, diet composition derived from both identification techniques combined did not differ significantly from hard-part identification alone, suggesting that past scat-based diet studies have not missed major dietary components. However, significant differences in relative diet contributions across scats (as identified using the two techniques separately) reflect passage rate differences between hard and soft digesta material and highlight certain hypothesized limitations in conventional morphological-based methods (e.g., differences in resistance to digestion, hard part regurgitation, partial and secondary prey consumption), as well as potential technical issues (e.g., resolution of primer efficiency and sensitivity and scat subsampling protocols). DNA analysis of salmon occurrence (from scat soft-part matrix and 238 archived salmon hard parts) provided species-level taxonomic resolution that could not be obtained by morphological identification and showed that Steller sea lions were primarily consuming pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Notably, DNA from Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers.
Resumo:
An estimated 538 million blackbirds and Starlings are found in the United States, based on the national cooperative blackbird/Starling winter roost survey conducted by the U.S. Fish and Wildlife Service during the 1974-75 winter period of December 20-February 15. Ap- proximately 74% or 398 million of these blackbirds and Starlings occurred in the Eastern States, including the tier from Minnesota to Louisiana; 26% or 139 million birds were in the West. The national roosting population in 1974-75 was composed of 11 species (Table 1) in the following approximate proportions: 38% Red-winged Blackbirds; 22% Common Grackles; 20% Starlings; 18% Brown-headed Cowbirds; 2% Brewer’s Blackbirds; and less than 1% six species combined (Rusty Blackbirds, Boat-tailed Grackles, Great-tailed Grackles, Tri-colored Black- birds, Yellow-headed Blackbirds, and Bronzed Cowbirds). (Some 2 million robins also were reported in the 1974-75 survey, though not solicited and therefore not tabulated, from 20 of the blackbird roosts in the Southeast.) The 1974-75 species proportions are similar to those found in the last nationwide winter survey (1969-70). In the 1963-64 national winter survey, Redwings made up 33% and Common Grackles 31% of the total population.
Resumo:
This paper is submitted in an effort to acquaint the personnel of allied State agencies with related laws which control the public and private possession of live exotic and native wild animals. The need for this common knowledge of related laws by agencies with law enforcement responsibility is readily apparent when the annual number and related problems from imported or resident wild animals in California are examined. In addition to resident wild animal populations, millions of fish and thousands of mammals, birds, and reptiles enter California each year through the utilization of most methods of transportation. Most of these imported animals are exotic species from foreign lands which cannot be readily identified and pose various degrees of potential and actual threat to native wild life, agriculture, and public health if they are introduced into the wilds of this State. For the purpose of this report, a general picture of imported exotic animals is presented in an introduction, and specific animals with related laws are treated individu-ally under the headings of current laws and future regulations.
Resumo:
The object is to hash over a few problems as we see them on this red-winged blackbird situation. I'm Mel Dyer, University of Guelph, Guelph, Ontario. Around the table are Tom Stockdale, Extension Wildlife Specialist, Ohio Cooperative Extension Service, Columbus; Maurice Giltz, Ohio Agriculture Research and Development Center, Wooster, Ohio; Joe Halusky, U.S. Fish and Wildlife Service, Columbus, Ohio; Daniel Stiles, U.S. Fish and Wildlife Service, Washington, D.C.; Paul Rodeheffer, U.S. Fish and Wildlife Service, Columbus, Ohio; Brian Hall, Blackbird Research Project, University of Guelph, Guelph, Ontario; George Cornwell, Virginia Polytechnic Insti¬tute, Blacksburg, Va.; Dick Warren, Peavey Grain Company, Minneapolis, Minn.; Bob Fringer, N.J. Department of Agriculture, Trenton, N.J.; Charles Stone, U.S. Fish and Wildlife Service, Columbus, Ohio; Larry Holcomb, Ohio Agricultural Research and Development Center, Wooster, Ohio; Doug Slack, Ohio Agricultural Research and Development Center, Wooster, Ohio; Charles Wagg, N.J. Department of Agriculture, Trenton, N.J.; Dick Smith, U.S. Fish and Wildlife Service, Columbus, Ohio; and Jim Caslick, U.S. Fish and Wildlife Service, Gainesville, Fla. As I see the situation, as a director of a red-winged blackbird research project, we have a problem which has been defined in human terms concerning a natural animal population.