2 resultados para Feature sizes
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Factor analysis was used to develop a more detailed description of the human hand to be used in the creation of glove sizes; currently gloves sizes are small, medium, and large. The created glove sizes provide glove designers with the ability to create a glove design that can provide fit to the majority of hand variations in both the male and female populations. The research used the American National Survey (ANSUR) data that was collected in 1988. This data contains eighty-six length, width, height, and circumference measurements of the human hand for one thousand male subjects and thirteen hundred female subjects. Eliminating redundant measurements reduced the data to forty-six essential measurements. Factor analysis grouped the variables to form three factors. The factors were used to generate hand sizes by using percentiles along each factor axis. Two different sizing systems were created. The first system contains 125 sizes for male and female. The second system contains 7 sizes for males and 14 sizes for females. The sizing systems were compared to another hand sizing system that was created using the ANSUR database indicating that the systems created using factor analysis provide better fit.
Resumo:
The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using several variations of DupER Augmentation (based on different imputation methodologies, deletion rates, and duplication rates), analyzed in BILOG-MG 3, and results are compared to those obtained from analyzing the raw data. Additional manipulated variables include test length and sample size. Estimates are compared using seven different evaluative criteria. Results are mixed and inconclusive. DupER augmented data tend to result in larger root mean squared errors (RMSEs) and lower correlations between estimates and parameters for both item and ability parameters. However, some DupER variations produce estimates that are much less biased than those obtained from the raw data alone. For one DupER variation, it was found that DupER produced better results for low-ability simulees and worse results for those with high abilities. Findings, limitations, and recommendations for future studies are discussed. Specific recommendations for future studies include the application of Duper Augmentation (1) to empirical data, (2) with additional IRT models, and (3) the analysis of the efficacy of the procedure for different item and ability parameter distributions.