3 resultados para FIELD-PRODUCED WATER
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.
Resumo:
Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.
Resumo:
Responding to a U.S. Federal court order to improve discharged wastewater quality, Augusta, Georgia initiated development of artificial wetlands in 1997 to treat effluents. Because of the proximity to Augusta Regional Airport at Bush Field, the U.S. Federal Aviation Administration expressed concern for potential increased hazard to aircraft posed by birds attracted to these wetlands. We commenced weekly low-level aerial surveys of habitats in the area beginning January, 1998. Over a one-year period, 49 surveys identified approximately 42,000 birds representing 52 species, including protected Wood Storks and Bald Eagles, using wetlands within 8 km of the airport. More birds were observed during the mid-winter and fall/spring migratory seasons (1,048 birds/survey; October - April) than during the breeding/post-breeding seasons (394 birds/survey; May - September). In winter, waterfowl dominated the avian assemblage (65% of all birds). During summer, wading birds were most abundant (56% of all birds). Habitat changes within the artificial wetlands produced fish kills and exposed mudflats, resulting in increased use by wading birds and shorebirds. No aquatic birds were implicated in 1998 bird strikes, and most birds involved could safely be placed within songbird categories. Airport incident reports further implicated songbirds. These findings suggested that efforts to decrease numbers of songbirds on the airport property must be included in the development of a wildlife hazard management plan. Seasonal differences in site use among species groups should also be considered in any such plan. Other wetlands within 8 km of the airport supported as many or more birds than the artificial wetlands. With proper management of the artificial wetlands, it should be possible to successfully displace waterfowl and wading birds to other wetlands further from the airport.