2 resultados para Explosive eruptions
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.
Resumo:
Abstract Yellowstone National Park is located over a hot spot under the North American tectonic plate and holds a potentially explosive super-volcano that has the ability to cause deadly consequences on the North American continent. After an eruption the surrounding region would see the greatest devastation, covered by pyroclastic deposits and thick ash fall exterminating most all life and destroying all structures in its path. In landscapes of greater distance from the event the consequences will be less dramatic yet still substantial. Records of previous eruption data from the Yellowstone super-volcano show that the ash fall out from the eruption can cover areas as large as one million square kilometers and could leave Nebraska covered in ash up to 10 centimeters thick. This would cause destruction of agriculture, extensive damage to structures, decreased temperatures, and potential respiratory hazards. The effects of volcanic ash on the human respiratory system have been shown to cause acute symptoms from heavy exposure. Symptoms include nasal irritation, throat irritation, coughing, and if preexisting conditions are present some can develop bronchial symptoms, which can last for a few days. People with bronchitis and asthma are shown to experience airway irritation and uncomfortable breathing. In most occurrences, exposure of volcanic ash is too short to cause long-term health hazards. Wearing facial protection can alleviate much of the symptoms. Most of the long-term ramifications of the eruption will be from the atmospheric changes caused from disruption of solar radiation, which will affect much of the global population. The most pertinent concerns for Nebraska citizens are from the accumulation of ash deposits over the landscape and the climatic perturbations. Potential mitigation procedures are essential to prepare our essentially unaware population of the threat that they may soon face if the volcano continues on its eruption cycle.