2 resultados para Error-resilient Applications

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

End-user programmers are increasingly relying on web authoring environments to create web applications. Although often consisting primarily of web pages, such applications are increasingly going further, harnessing the content available on the web through “programs” that query other web applications for information to drive other tasks. Unfortunately, errors can be pervasive in web applications, impacting their dependability. This paper reports the results of an exploratory study of end-user web application developers, performed with the aim of exposing prevalent classes of errors. The results suggest that end-users struggle the most with the identification and manipulation of variables when structuring requests to obtain data from other web sites. To address this problem, we present a family of techniques that help end user programmers perform this task, reducing possible sources of error. The techniques focus on simplification and characterization of the data that end-users must analyze while developing their web applications. We report the results of an empirical study in which these techniques are applied to several popular web sites. Our results reveal several potential benefits for end-users who wish to “engineer” dependable web applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.