9 resultados para Eradication and containment

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Native to Africa, Gambian giant pouched rats (Gambian rats; Cricetomys gambianus Waterh.) are a threatening invasive species on a Florida island, Grassy Key. Gambian giant pouched rats shifted from a domestic pet to invading species after suspected release from a pet breeder. Because of the large size of Gambian rats (weighing up to 2.8 kg), they pose a serious threat to native species (particularly nesting species) and agricultural crops, especially if Gambian rats invade mainland Florida. Also, Gambian rats pose a threat from disease, as they were implicated in a monkeypox outbreak in the mid-western United States in 2003. The United States Department of Agriculture’s Wildlife Services has initiated eradication and detection efforts in the Florida Keys, but trapping the sparse population of Gambian rats has proven difficult. RESULTS: Fifteen attractants that could be used in traps for capturing or detecting single or paired Gambian rats were tested. It was found that conspecific scents (i.e. feces and urine) from other Gambian rats were the best treatment for attracting single and paired Gambian rats. Single Gambian rats explored more attractant types than paired Gambian rats. CONCLUSIONS: Effective attractants for use with Gambian rats have been identified, and multiple attractant types should be used to capture or detect the sparse population. It is recommended that mainly urine and feces from Gambian rats be used, but peanut butter, anise, ginger and fatty acid scent could also be useful for attracting the currently small population of Gambian rats on Grassy Key.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock and the cause for many faltering bovine tuberculosis eradication programs. One approach in dealing with wildlife reservoirs of disease is to interrupt inter-species and intraspecies transmission through vaccination of deer or cattle. To evaluate the efficacy of BCG vaccination in white-tailed deer, 35 deer were assigned to one of three groups; one s.c. dose of 107 CFU of M. bovis BCG Pasteur (n = 12); 1 s.c. dose of 107 CFU of M. bovis BCG Danish (n = 11); or unvaccinated deer (n = 12). After vaccination, deer were inoculated intratonsilarly with virulent M. bovis. Lesion severity scores of the medial retropharyngeal lymph node, as well as all lymph nodes combined, were reduced in vaccinated deer compared to unvaccinated deer. BCG Danish vaccinated deer had no late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli compared to BCG Pasteur vaccinated or unvaccinated deer where such lesions were present. Both BCG strains were isolated as late as 250 days after vaccination from deer that were vaccinated but not challenged. In white-tailed deer, BCG provides protection against challenge with virulent M. bovis. Issues related to vaccine persistence, safety and shedding remain to be further investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1994, the state of Michigan has recognized a problem with bovine tuberculosis (TB), caused by Mycobacterium bovis, in wild white-tailed deer from a 12-county area in northeastern Lower Michigan. A total of 65,000 free-ranging deer have been tested, and 340 have been found to be positive for M. bovis. The disease has been found in other wildlife species, and, in 1998, in domestic cattle, where to date 13 beef cattle and 2 dairy cattle herds have been diagnosed with bovine TB. Unfortunately, the situation is unique in that there have never been reports of self-sustaining bovine TB in a wild, free-ranging cervid population in North America. Scientists, biologists, epidemiologists, and veterinarians who have studied this situation have concluded that the most logical theory is that high deer densities and the focal concentration caused by baiting (the practice of hunting deer over feed) and feeding are the factors most likely responsible for the establishment of self-sustaining TB in free-ranging Michigan deer. Baiting and feeding have been banned since 1998 in counties where the disease has been found. In addition, the deer herd has been reduced by 50% in the endemic area with the use of unlimited antlerless permits. The measures of apparent TB prevalence have been decreased by half since 1997, providing hopeful preliminary evidence that eradication strategies are succeeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highlights • Wildlife Services used GIS and GPS to document and track bait distribution during each bait drop. • GIS and GPS were critical in making this eradication project effective and environmentally safe. • Use of the technologies ensured the coverage necessary for the project's goals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Michigan Departments of Agriculture, Community Health, and Natural Resources, US Department of Agriculture (USDA) and Michigan State University work cooperatively together as the bovine TB eradication project partners. The interagency group combines expertise in epidemiology, veterinary and human medicine, pathology, wildlife biology, animal husbandry, regulatory law and policy and risk communications. The stakeholders, those impacted by the disease, include agriculture and tourism industry representatives, “Mom-and-Pop” businesses, hunters, wildlife enthusiasts, farmers, Local Health Departments and legislators. The regulatory agencies are the above mentioned project partners, excluding MSU and USDA Wildlife Services, both of which offer services to agencies and stakeholders. Eradicating bovine TB would not be difficult if there were no social issues surrounding it. The economy, hunting traditions, animal management, tourism and human health are all impacted by regulatory response to the disease. Often the social issues play a large role in decision making, therefore it is important to understand your clientele and anticipate public reaction to policy changes and requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Animal Health Board (AHB) is the agency responsible for controlling bovine tuberculosis (Tb) in New Zealand. In 2000, the AHB embarked on a strategy designed to reduce the annual period prevalence of Tb infected cattle and farmed deer herds from 1.67% to 0.2% by 2012/13. Under current rules of the Office International des Epizooties (OIE) this would allow New Zealand to claim freedom from Tb. The epidemiology of Tb in New Zealand is largely influenced by wildlife reservoirs of infection and control of Tb vector populations is central to the elimination of Tb from New Zealand’s cattle and deer herds. The AHB has classified New Zealand’s land area into Vector Risk Areas (VRAs) where Tb is established in wildlife (currently 39%) and Vector Free Areas (VFAs) where the disease is not established (61%). Within the VRAs the introduced Australian brushtail possum (Trichosurus vulpecula) is the primary wildlife maintenance host and the main source of infection for domestic cattle and deer herds. Southland is a region of New Zealand with a long history of wildlife associated Tb. Progress in reducing infected herd numbers has been impressive in recent years, primarily due to an intensive possum control program. As a result of this reduction, the focus is now shifting to that of providing increasing levels of confidence that Tb is absent from the remaining susceptible wildlife. High levels of confidence of Tb freedom in wildlife will allow the AHB to reduce the wildlife control programs and ultimately cease control altogether, with minimal risk of Tb reemerging. This paper examines the strategies being utilized to provide that confidence. The types of data, the format in which it is collected and the methods of analysis and review are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.