3 resultados para Environmental Action for Survival
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The recent likely extinction of the baiji (Chinese river dolphin [Lipotes vexillifer]) (Turvey et al. 2007) makes the vaquita (Gulf of California porpoise [Phocoena sinus]) the most endangered cetacean. The vaquita has the smallest range of any porpoise, dolphin, or whale and, like the baiji, has long been threatened primarily by accidental deaths in fishing gear (bycatch) (Rojas-Bracho et al. 2006). Despite repeated recommendations from scientific bodies and conservation organizations, no effective actions have been taken to remove nets from the vaquita’s environment. Here, we address three questions that are important to vaquita conservation: (1) How many vaquitas remain? (2) How much time is left to find a solution to the bycatch problem? and (3) Are further abundance surveys or bycatch estimates needed to justify the immediate removal of all entangling nets from the range of the vaquita? Our answers are, in short: (1) there are about 150 vaquitas left, (2) there are at most 2 years within which to find a solution, and (3) further abundance surveys or bycatch estimates are not needed. The answers to the first two questions make clear that action is needed now, whereas the answer to the last question removes the excuse of uncertainty as a delay tactic. Herein we explain our reasoning.
Resumo:
Abstract Emerald Ash Borer (Agrilus planipennis) (EAB) is an invasive insect pest. It feeds on the cambium tissues of ash tree species. It was first discovered in the United States in 2002 in Detroit, Michigan. Their effects on ash trees are deadly, and it is quickly spreading across the Midwest. Nebraska has not yet been invaded, but confirmed findings continue getting closer and closer. The major problem facing Nebraskans, with regards to EAB, is how to begin preparations to prevent a dramatic economic loss when an infestation does occur. So, to address this problem, I have conducted street and park tree inventories, to determine the amount of ash trees that are contained in Nebraska’s community forests; and with that data I have attempted to create a possible EAB action plan for Nebraska communities. Based on inventory findings, I have calculated that 6% of Nebraska’s community trees are ash, which is a large percentage. Then, I proposed a plan of action for communities that involve planting a diverse landscape, and a combination of ash replacement programs, and treatment for ash that are less valuable or damaged.
Resumo:
Abstract The purpose of this research was to study the sex distribution and energy allocation of dioecious Eastern Red Cedars (Juniperus virginiana) along an environmental resource gradient. The trees surveyed were growing in a canyon located at the University of Nebraska’s Cedar Point Biological Research Station in Ogallala, Nebraska. Due to the geography of this canyon, environmental factors necessary for plant growth should vary depending on the tree’s location within the canyon. These factors include water availability, sun exposure, ground slope, and soil nitrogen content, all of which are necessary for carbon acquisition. Juniperus virginiana is a dioecious conifer. Dioecious plants maintain male and female reproductive structures on separate individuals. Therefore, proximal spatial location is essential for pollination and successful reproduction. Typically female reproductive structures are more costly and require a greater investment of carbon and nitrogen. For this reason, growth, survival and successful reproduction are more likely to be limited by environmental resources for females than for male individuals. If this is true for Juniperus virginiana, females should be located in more nutrient and water rich areas than males. This also assumes that females can not be reproductively successful in areas of poor environmental quality. Therefore, reproductive males should be more likely to inhabit environments with relatively lower resource availability than females. Whether the environment affects sexual determination or just limits survival of different sexes is still relatively unknown. In order to view distribution trends along the environmental gradient, the position of the tree in the canyon transect was compared to its sex. Any trend in sex should correspond with varying environmental factors in the canyon, ie: sunlight availability, aspect, and ground slope. The individuals’ allocation to growth and reproduction was quantified first by comparing trunk diameter at six inches above ground to sex and location of the tree. The feature of energy allocation was further substantiated by comparing carbon and nitrogen content in tree leaf tissue and soil to location and sex of each individual. Carbon and nitrogen in soil indicate essential nutrient availability to the individual, while C and N in leaf tissue indicate nutrient limitation experienced by the tree. At the conclusion of this experiment, there is modest support that survival and fecundity of females demands environments relatively richer in nutrients, than needed by males to survive and be reproductively active. Side of the canyon appeared to have an influence on diameter of trees, frequency of sex and carbon and nitrogen leaf content. While this information indicated possible trends in the relation of sex to nutrient availability, most of the environmental variables presumed responsible for the sex distribution bias differed minutely and may not have been biologically significant to tree growth.