2 resultados para Electro-acoustics

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥ 8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2. Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3. Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4. Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5. Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.