2 resultados para Electric meters.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Prairie dog (Cynomys ludovicianus) control has historically consisted of lethal methods to maintain, reduce, or eliminate populations in South Dakota and throughout the species range. Non-lethal methods of control are desired to meet changing management objectives for the black-tailed prairie dog. The use of naturally occurring buffer strips as vegetative barriers may be effective in limiting prairie dog town expansion. The objectives of this study were: 1) to evaluate effective width of vegetative barriers in limiting prairie dog towns expansion in western South Dakota; and 2) to document effect native vegetation height on expansion of prairie dog towns in western South Dakota. Five study sites were established in western South Dakota on rangelands containing prairie dog towns of adequate size. Electric fences were constructed for the purpose of excluding cattle and creating buffer strips of native grasses and shrubs. Prairie dogs were poisoned to create a prairie dog free buffer zone adjacent to active prairie dog towns. Grazing was allowed on both sides of the buffer strip. When grazing pressure was not sufficient, mowing was used to simulate grazing. Buffer strips were 100 meters long and 10, 25, and 40 meters in width. A zero meter control was included on all study sites. Quadrats (25) were randomly distributed throughout the buffer strips. Evaluation of study sites included visual obstruction, vegetation cover, vegetation frequency, vegetation height, and vegetation identification. Barrier penetration was evaluated by the presence of new active burrows behind vegetative barriers. Significant relationships were documented for both VOR and vegetation height. No significant difference was found between frequency of breakthroughs and buffer widths.
Resumo:
Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.