2 resultados para Elastic dipole components

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Last, the paper provides a brief review of experimental WDM networks that have been implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new steel girder bridge system was developed at the University of Nebraska. The innovative girder design is a box girder folded from a single steel plate that has a trapezoid shape with an opening on the bottom. The girder has application in short span bridges and accelerated construction situations. The structural performance of the girder requires investigation in all stages of a bridge’s lifecycle. This thesis contains descriptions and results from the first two tests from a series of tests developed to evaluate this new girder shape. The objective of these two tests was to investigate the constructability of the girders. During construction a bridge is in its least stable condition and it is important that the bridge components exhibit both adequate strength and stability during this critical stage. To this end, two girders were tested in flexure over a simple span as a non-composite beam simulating the loading the girders would be subjected to during construction. The results of the two tests indicate that the folded girder as a whole, and its components, provide adequate strength and stability at construction load levels. Failure occurred at loads that were above normal construction load levels and resulted in a ductile failure mode, which is a well documented benefit of steel components. The girders remained stable through all phases of loading including failure. The top flange was the weakest component of the beam during construction due to its role as a compression element that has a slender and un-braced form. The compression in the top flange caused local buckling in the top flange even at elastic load levels. This was the cause for loss of stiffness and failure in both specimens. Incorporation of a ridge at the center of the top flange of specimens, results of which are not reported in this thesis, proved to resolve this very early buckling issue.