3 resultados para Elastic And Statistically Brittle (Esb) Model

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples. This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when using the model. The model takes into account the heterogeneity of the materials that can only be noticed at smaller length scales, based on the fundamental structural properties of each of the composite’s constituents. This model can potentially reduce or eliminate the need of costly and time consuming experiments that are necessary for material characterization since it relies strictly upon the fundamental structural properties of each of the composite’s constituents. The results from simulations using the multiscale model were compared against results from direct simulations using over-killed meshes, which considered all heterogeneities explicitly in the global scale, indicating that the model is an accurate and fast tool to model composites under impact loads. Advisor: David H. Allen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine current food handling practices, knowledge and beliefs of primary food handlers with children 10 years old and the relationship between these components. Design: Surveys were developed based on FightBac!™ concepts and the Health Belief Model (HBM) construct. Participants: The majority of participants (n= 503) were females (67%), Caucasians (80%), aged between 30 to 49 years old (83%), had one or two children (83%), prepared meals all or most of the time (76%) and consumed meals away from home three times or less per week (66%). Analysis: Descriptive statistics and inferential statistics using Spearman’s rank correlation coefficient (rho) (p<0.05 and one-tail) and Chi-square were used to examine frequency and correlations. Results: Few participants reached the food safety objectives of Healthy People 2010 for safe food handling practices (79%). Mixed results were reported for perceived susceptibility. Only half of the participants (53-54%) reported high perceived severity for their children if they contracted food borne illness. Most participants were confident of their food handling practices for their children (91%) and would change their food handling practices if they or their family members previously experienced food poisoning (79%). Participants’ reasons for high self-efficacy were learning from their family and independently acquiring knowledge and skills from the media, internet or job. The three main barriers to safe food handling were insufficient time, lots of distractions and lack of control of the food handling practices of other people in the household. Participants preferred to use food safety information that is easy to understand, has scientific facts, causes feelings of health-threat and has lots of pictures or visuals. Participants demonstrate high levels of knowledge in certain areas of the FightBac!TM concepts but lacked knowledge in other areas. Knowledge and cues to action were most supportive of the HBM construct, while perceived susceptibility was least supportive of the HBM construct. Conclusion: Most participants demonstrate many areas to improve in their food handling practices, knowledge and beliefs. Adviser: Julie A. Albrecht