5 resultados para Distribution management

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

North Pacific right whales (Eubalaena japonica) were extensively exploited in the 19th century, and their recovery was further retarded (severely so in the eastern population) by illegal Soviet catches in the 20th century, primarily in the 1960s. Monthly plots of right whale sightings and catches from both the 19th and 20th centuries are provided, using data summarized by Scarff (1991, from the whale charts of Matthew Fontaine Maury) and Brownell et al. (2001), respectively. Right whales had an extensive offshore distribution in the 19th century, and were common in areas (such as the Gulf of Alaska and Sea of Japan) where few or no right whales occur today. Seasonal movements of right whales are apparent in the data, although to some extent these reflect survey and whaling effort. That said, these seasonal movements indicate a general northward migration in spring from lower latitudes, and major concentrations above 40°N in summer. Sightings diminished and occurred further south in autumn, and few animals were recorded anywhere in winter. These north-south migratory movements support the hypothesis of two largely discrete populations of right whales in the eastern and western North Pacific. Overall, these analyses confirm that the size and range of the right whale population is now considerably diminished in the North Pacific relative to the situation during the peak period of whaling for this species in the 19th century. For management purposes, new surveys are urgently required to establish the present distribution of this species; existing data suggest that the Bering Sea, the Gulf of Alaska, the Okhotsk Sea, the Kuril Islands and the coast of Kamchatka are the areas with the greatest likelihood of finding right whales today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the proposed key management protocols for wireless sensor networks (WSNs) in the literature assume that a single base station is used and that the base station is trustworthy. However, there are applications in which multiple base stations are used and the security of the base stations must be considered. This paper investigates a key management protocol in wireless sensor networks which include multiple base stations. We consider the situations in which both the base stations and the sensor nodes can be compromised. The proposed key management protocol, mKeying, includes two schemes, a key distribution scheme, mKeyDist, supporting multiple base stations in the network, and a key revocation scheme, mKeyRev, used to efficiently remove the compromised nodes from the network. Our analyses show that the proposed protocol is efficient and secure against the compromise of the base stations and the sensor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive feral swine (Sus scrofa) cause deleterious impacts to ecosystem processes and functioning throughout their worldwide distribution, including forested ecosystems in the United States. Unfortunately, many feral swine damage management programs are conducted in a piecemeal fashion, are not adequately funded, and lack clearly stated or realistic objectives. This review paper identifies damage caused by feral swine to forest resources and presents techniques used to prevent and control feral swine damage. Concluding points related to planning a feral swine damage management program are: (1) the value of using a variety of techniques in an integrated fashion cannot be overstated; (2) there is value in using indices for both feral swine populations and their damage pre and post management activities; (3) innovative technologies will increasing be of value in the pursuit of feral swine damage reduction; and (4) though not appropriate in every situation, there is value in involving the public in feral swine damage management decisions and activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Water temperature and dissolved oxygen (DO) profiles were measured once every month from mid July to mid February in a relatively deep sand-pit lake in southeast Nebraska. These profiles showed depleted DO concentrations below the thermocline during summer stratification indicating areas fish will likely avoid in summer months. Colder temperatures in fall caused complete mixing of the water column allowing fish to inhabit all depths of the lake. An inverse temperature stratification occurred directly below the ice during winter months as ice cover cooled the surface water to below 4 degrees Celsius. Ice cover also blocked air – water oxygen transfer and reduced light for photosynthesizing algae. Associated with winter ice cover, DO concentrations in the hypolimnion decreased significantly, once again reducing available fish habitat. It is likely anglers will have a higher success rate catching fishing in water above 6 meters (m) (~20 feet) in a eutrophic sandpit lake during hot summer months and below ice cover in winter. Fish can utilize all depths of the lake during fall turnover and could theoretically be caught by anglers anywhere in the lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The purpose of this research was to study the sex distribution and energy allocation of dioecious Eastern Red Cedars (Juniperus virginiana) along an environmental resource gradient. The trees surveyed were growing in a canyon located at the University of Nebraska’s Cedar Point Biological Research Station in Ogallala, Nebraska. Due to the geography of this canyon, environmental factors necessary for plant growth should vary depending on the tree’s location within the canyon. These factors include water availability, sun exposure, ground slope, and soil nitrogen content, all of which are necessary for carbon acquisition. Juniperus virginiana is a dioecious conifer. Dioecious plants maintain male and female reproductive structures on separate individuals. Therefore, proximal spatial location is essential for pollination and successful reproduction. Typically female reproductive structures are more costly and require a greater investment of carbon and nitrogen. For this reason, growth, survival and successful reproduction are more likely to be limited by environmental resources for females than for male individuals. If this is true for Juniperus virginiana, females should be located in more nutrient and water rich areas than males. This also assumes that females can not be reproductively successful in areas of poor environmental quality. Therefore, reproductive males should be more likely to inhabit environments with relatively lower resource availability than females. Whether the environment affects sexual determination or just limits survival of different sexes is still relatively unknown. In order to view distribution trends along the environmental gradient, the position of the tree in the canyon transect was compared to its sex. Any trend in sex should correspond with varying environmental factors in the canyon, ie: sunlight availability, aspect, and ground slope. The individuals’ allocation to growth and reproduction was quantified first by comparing trunk diameter at six inches above ground to sex and location of the tree. The feature of energy allocation was further substantiated by comparing carbon and nitrogen content in tree leaf tissue and soil to location and sex of each individual. Carbon and nitrogen in soil indicate essential nutrient availability to the individual, while C and N in leaf tissue indicate nutrient limitation experienced by the tree. At the conclusion of this experiment, there is modest support that survival and fecundity of females demands environments relatively richer in nutrients, than needed by males to survive and be reproductively active. Side of the canyon appeared to have an influence on diameter of trees, frequency of sex and carbon and nitrogen leaf content. While this information indicated possible trends in the relation of sex to nutrient availability, most of the environmental variables presumed responsible for the sex distribution bias differed minutely and may not have been biologically significant to tree growth.