2 resultados para Dissolved nickel
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.
Resumo:
Abstract Water temperature and dissolved oxygen (DO) profiles were measured once every month from mid July to mid February in a relatively deep sand-pit lake in southeast Nebraska. These profiles showed depleted DO concentrations below the thermocline during summer stratification indicating areas fish will likely avoid in summer months. Colder temperatures in fall caused complete mixing of the water column allowing fish to inhabit all depths of the lake. An inverse temperature stratification occurred directly below the ice during winter months as ice cover cooled the surface water to below 4 degrees Celsius. Ice cover also blocked air – water oxygen transfer and reduced light for photosynthesizing algae. Associated with winter ice cover, DO concentrations in the hypolimnion decreased significantly, once again reducing available fish habitat. It is likely anglers will have a higher success rate catching fishing in water above 6 meters (m) (~20 feet) in a eutrophic sandpit lake during hot summer months and below ice cover in winter. Fish can utilize all depths of the lake during fall turnover and could theoretically be caught by anglers anywhere in the lake.