2 resultados para Discrete reflection
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In this action research study, I investigated the use of journaling in my seventh grade mathematics classroom. I discovered that journaling can be a very rewarding and beneficial experience for me and for my students. Through journaling, my students became more adept at using correct mathematical terminology in writing and in speaking. The students also believed that they learned the content more deeply and retained it better. Additionally, implementing mathematical journals caused me to emphasize the use of correct terminology and thorough explanations of mathematical thinking in classroom discussions. As a result of this research, I plan to refine my journaling process and continue to use mathematical journals with my future classes.
Resumo:
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.