34 resultados para Dirty Bird, Inc.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Academics across the country are having an allergic reaction to the corporate model of operation being adopted by many universities. Terms like branding, collateral materials, budget controls, marketing strategies, and outcomes are causing a panic among faculty who believe that a customer satisfaction approach to higher education is anti-intellectual and that it leads to grade inflation, teaching toward evaluations, and learning as product, not process. Honors programs in particular, often the standard bearers of undergraduate academic standards, are being asked to market themselves not only to the top prospective students, but also to the university administration at large. Honors is frequently the default focus group expected to show the rest of the university programs and departments ‘How it is done,’ or rather, ‘How it is done according to standard.’ By ‘it,’ of course, I mean marketing our curriculum, selling our program, and branding our product.
Resumo:
It’s a pleasure to be able to speak with you today. I want you to know that Virginia and I are delighted to be in Nebraska. And I’m especially happy to have arrived in the state at a time where I can, on my 7th day on the job, learn so much about UNL just by reading the state’s largest newspaper.
Resumo:
Good morning! On behalf of the Institute of Agriculture and Natural Resources representatives here this morning, I want to express our very real pleasure in being with you, and our very great appreciation of all that you do. We in the Institute value the Agriculture Builders of Nebraska highly. Your support for our work and the wise counsel of ABN members has been invaluable to me personally since my arrival in Nebraska, and I know that is true of the entire Institute, as well. In fact, the thoughtful perspective and the confidential advice of the ABN Executive Committee in the recent third-round of budget cutting decisions we faced in the Institute helped me work through what we had to do in that very, very difficult round of cuts.
Resumo:
There’s a story that a construction foreman one day noticed one of his workers pushing his wheelbarrow upside down around the work site. “Hey,” the foreman shouted, “turn that thing right side up!” The man with the wheelbarrow looked at him in surprise. “Don’t be silly,” he said. “Every time I do that, they put bricks in it!” I think of that story sometimes, in the midst of these difficult economic times, as our states, its people, and its university, in turn, wrestle with budge cuts. Wouldn’t it be great if we all could just turn our wheelbarrows over and say, “No thanks, no more brick! No more heavy loads to haul!”
Resumo:
As the methods-development arm of the U.S. Department of Agriculture’s Wildlife Services program, the National Wildlife Research Center (NWRC) is charged with developing tools and information for protecting agriculture, human health and safety, and property from problems caused by wildlife, including birds. Increasingly the NWRC is being asked to provide basic ecological information on the population status of various bird species, and its role is expanding from a reactive one of providing management options to that of predicting long-term implications of various management actions. This paper describes several areas of research by NWRC scientists to address population-level questions in support of WS mission.
Resumo:
What a pleasure it is to be with you here this morning! And How startling it is to realize a whole year has passed since we last gathered at this meeting. So much has occurred in that year.
Resumo:
Those of us in the Institute of Agriculture and Natural Resources at your land-grant university view ourselves as partners with Nebraska. Taking the resources of this great university to the citizens of our state is a mission we take very, very seriously. We work hard to apply the university's resources in a diverse number of ways to benefit Nebraska. Today it is my very great pleasure to have this opportunity to provide a brief report to you, our partners, on some of the ways we are returning your investment in us to benefit our state.
Resumo:
It's such a pleasure to be here with you this morning. Each year I look forward to this opportunity to visit with you, to hear your thoughts, to thank you for all you do for the Institute of Agriculture and Natural Resources, and for the University of Nebraska. We truly appreciate your support and your hard work on our behalf. I think Nebraska is extremely fortunate to have ABN at work in our state.
Resumo:
Let me start today by saying thank you. Thank you, each of you, for your strong support of the Institute of Agriculture and Natural Resources and the University of Nebraska.
Resumo:
Good morning! There's a lot of information I want to share with you in a short amount of time, so I'm going to get right to it.
Resumo:
We are living in a day of change. Environmental awareness is a part of our everyday life in a way unprecedented in history. The courts, in their infinite wisdom, have initiated the joint and several liability (deep pocket) rules that make everyone at risk in almost all situations. Bird management programs, by their very nature, are extremely sensitive. Any project, if not evaluated, planned, carried out, and documented properly can result in adverse regulatory agency action, bad publicity, and even fines or lawsuits. Proper photographic documentation can play a vital part in helping to provide the necessary records to help prevent problems and/or defend yourself in case of lawsuit or regulatory action. In the preparation of this paper, we surveyed state pesticide lead agencies, state Department of Conservation (Fish and Wildlife) agencies, some U.S. Fish and Wildlife Law Enforcement personnel, and several individuals to get their reaction to and their comments about this concept of supplemental recordkeeping. Of those responding, a majority thought the concept of supplemental photographic recordkeeping would be an asset to individuals and organi¬zations conducting bird management projects.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
It has been known for centuries that light (photoperiod) is possibly the major environmental stimuli affecting bird behavior and physiology. The length of the light period stimulates the breeding cycle, migration, fat deposition, and molt in most species of birds. Therefore, it is only natural that one would think of using light as a means of bird control. In fact, light has already been used as a bird control; flood-light traps have been used to trap blackbirds (Meanley 1971); Meanley states that 2000-W search lights have been used to alleviate depredation by ducks in rice fields. Pulsing light is already used on aircraft, aircraft hangers and high towers as a means of detourinq birds (Schaefer, 1968). With some positive results already obtained with light as a bird control, the next step is to see if a better light source (the laser) might not have a greater effect. The laser is basically an intense and coherent light with extreme directivity and, thus, might have greater influence on a bird’s behavioral and physiological responses.
Resumo:
Today I am going to give you a report on recent bird ingestion events into transport category turbofan engine in commercial service. We are still having these events. We may not ever completely eliminate all such events, but our purpose for meeting is to put all our resources to work to try. The events that I am going to report on today represent some of the more significant events over the last couple of years. The events are significant because of the potential for jeopardizing the safety of the aircraft involved and the aircraft occupants. The events I am going to discuss all involve encounters with large birds. Each situation reflects a bird control issue or event that resulted in a high workload for the flight crew because something out of the ordinary happened that they had to respond to. Some of the situations involve areas outside the US or Canada but serve as a lesson because that the same situation can happen here.
Resumo:
The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.