2 resultados para Diffusive gradients in thin films technique (DGT)

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide (SiC) is considered a suitable candidate for high-power, high-frequency devices due to its wide bandgap, high breakdown field, and high electron mobility. It also has the unique ability to synthesize graphene on its surface by subliming Si during an annealing stage. The deposition of SiC is most often carried out using chemical vapor deposition (CVD) techniques, but little research has been explored with respect to the sputtering of SiC. Investigations of the thin film depositions of SiC from pulse sputtering a hollow cathode SiC target are presented. Although there are many different polytypes of SiC, techniques are discussed that were used to identify the film polytype on both 4H-SiC substrates and Si substrates. Results are presented about the ability to incorporate Ge into the growing SiC films for the purpose of creating a possible heterojunction device with pure SiC. Efforts to synthesize graphene on these films are introduced and reasons for the inability to create it are discussed. Analysis mainly includes crystallographic and morphological studies about the deposited films and their quality using x-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Auger electron spectroscopy (AES) and Raman spectroscopy. Optical and electrical properties are also discussed via ellipsometric modeling and resistivity measurements. The general interpretation of these analytical experiments indicates that the films are not single crystal. However, the majority of the films, which proved to be the 3C-SiC polytype, were grown in a highly ordered and highly textured manner on both (111) and (110) Si substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: One way to produce high order in a block copolymer thin film is by solution casting a thin film and slowly evaporating the solvent in a sealed vessel. Such a solvent-annealing process is a versatile method to produce a highly ordered thin film of a block copolymer. However, the ordered structure of the film degrades over time when stored under ambient conditions. Remarkably, this aging process occurs in mesoscale thin films of polystyrene-polyisoprene triblock copolymer where the monolayer of vitrified 15 nm diameter polystyrene cylinders sink in a 20 nm thick film at 22 °C. The transformation is studied by atomic force microscopy (AFM). We describe the phenomena, characterize the aging process, and propose a semiquantitative model to explain the observations. The residual solvent effects are important but not the primary driving force for the aging process. The study may lead to effective avenue to improve order and make the morphology robust and possibly the solvent-annealing process more effective.