6 resultados para Data-Intensive Science

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing recognition among wildlife managers that focusing management on wildlife often provides a temporary fix to human–wildlife conflicts, whereas changing human behavior can provide long-term solutions. Human dimensions research of wildlife conflicts frequently focuses on stakeholders’ characteristics, problem identification, and acceptability of management, and less frequently on human behavior and evaluation of management actions to change that behavior. Consequently, little information exists to assess overall success of management. We draw on our experience studying human–bear conflicts, and argue for more human dimensions studies that focus on change in human behavior to measure management success. We call for help from social scientists to conduct applied experiments utilizing two methods, direct observation and self-reported data, to measure change in behavior. We are optimistic these approaches will help fill the managers’ tool box and lead to better integration of human dimensions into human–wildlife conflict management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares information-seeking behavior of Bachelor of Science and Master of Science students in the fields of agricultural extension and education. The authors surveyed Iranian students in departments of agricultural extension and education at four universities in Tehran, Shiraz, Mollasani, and Kermanshah. This study focused on three aspects: (1) comparison of amounts of information-seeking behavior between Bachelor of Science and Master of Science agricultural extension and education students; (2) comparison of information-seeking behavior varieties in Bachelor of Science and Master of Science agricultural extension and education students; (3) Comparison of amounts of available information resources at four universities and its effectiveness on students' information-seeking behavior; and (4) comparison of research and educational outputs in Bachelor of Science and Master of Science students. Scale free technique, division by mean method, principal components analysis technique, Delphi method, t-test, correlation and regression tools were used for data analysis. This study revealed that Bachelor of Science students' information-seeking behavior is for improving educational output, but Master of Science students' information-seeking behavior is for promoting research output. Among varieties of Internet searching skills, library searching skills, and awareness of library information-seeking methods with students' information-seeking behavior, there are not significant differences between two groups of students.