3 resultados para Damage Variable (D)
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The western spread of raccoon rabies in Alabama has been slow and even appears to regress eastward periodically. While the disease has been present in the state for over 30 years, areas in northwest Alabama are devoid of raccoon rabies. This variation resulting in an enzootic area of raccoon rabies primarily in southeastern Alabama may be due to landscape features that hinder the movement of raccoons (i.e., gene flow) among different locations. We used 11 raccoon-specific microsatellite markers to obtain individual genotypes to examine gene flow among areas that were rabies free, enzootic with rabies, or had only sporadic reports of the disease. Samples from 70 individuals were collected from 5 sampling localities in 3 counties. The landscape feature data were collected from geographic information system (GIS) data. We inferred gene flow by estimating FST and by using Bayesian tests to identify genetic clusters. Estimates of pairwise FST indicated genetic differentiation and restricted gene flow between some sites, and an uneven distribution of genetic clusters was observed. Of the landscape features examined (i.e., land cover, elevation, slope, roads, and hydrology), only land cover had an association with genetic differentiation, suggesting this landscape variable may affect gene flow among raccoon populations and thus the spread of raccoon variant of rabies in Alabama.
Resumo:
"How large a sample is needed to survey the bird damage to corn in a county in Ohio or New Jersey or South Dakota?" Like those in the Bureau of Sport Fisheries and Wildlife and the U.S.D.A. who have been faced with a question of this sort we found only meager information on which to base an answer, whether the problem related to a county in Ohio or to one in New Jersey, or elsewhere. Many sampling methods and rates of sampling did yield reliable estimates but the judgment was often intuitive or based on the reasonableness of the resulting data. Later, when planning the next study or survey, little additional information was available on whether 40 samples of 5 ears each or 5 samples of 200 ears should be examined, i.e., examination of a large number of small samples or a small number of large samples. What information is needed to make a reliable decision? Those of us involved with the Agricultural Experiment Station regional project concerned with the problems of bird damage to crops, known as NE-49, thought we might supply an ans¬wer if we had a corn field in which all the damage was measured. If all the damage were known, we could then sample this field in various ways and see how the estimates from these samplings compared to the actual damage and pin-point the best and most accurate sampling procedure. Eventually the investigators in four states became involved in this work1 and instead of one field we were able to broaden the geographical base by examining all the corn ears in 2 half-acre sections of fields in each state, 8 sections in all. When the corn had matured well past the dough stage, damage on each corn ear was assessed, without removing the ear from the stalk, by visually estimating the percent of the kernel surface which had been destroyed and rating it in one of 5 damage categories. Measurements (by row-centimeters) of the rows of kernels pecked by birds also were made on selected ears representing all categories and all parts of each field section. These measurements provided conversion factors that, when fed into a computer, were applied to the more than 72,000 visually assessed ears. The machine now had in its memory and could supply on demand a map showing each ear, its location and the intensity of the damage.
Resumo:
The object is to hash over a few problems as we see them on this red-winged blackbird situation. I'm Mel Dyer, University of Guelph, Guelph, Ontario. Around the table are Tom Stockdale, Extension Wildlife Specialist, Ohio Cooperative Extension Service, Columbus; Maurice Giltz, Ohio Agriculture Research and Development Center, Wooster, Ohio; Joe Halusky, U.S. Fish and Wildlife Service, Columbus, Ohio; Daniel Stiles, U.S. Fish and Wildlife Service, Washington, D.C.; Paul Rodeheffer, U.S. Fish and Wildlife Service, Columbus, Ohio; Brian Hall, Blackbird Research Project, University of Guelph, Guelph, Ontario; George Cornwell, Virginia Polytechnic Insti¬tute, Blacksburg, Va.; Dick Warren, Peavey Grain Company, Minneapolis, Minn.; Bob Fringer, N.J. Department of Agriculture, Trenton, N.J.; Charles Stone, U.S. Fish and Wildlife Service, Columbus, Ohio; Larry Holcomb, Ohio Agricultural Research and Development Center, Wooster, Ohio; Doug Slack, Ohio Agricultural Research and Development Center, Wooster, Ohio; Charles Wagg, N.J. Department of Agriculture, Trenton, N.J.; Dick Smith, U.S. Fish and Wildlife Service, Columbus, Ohio; and Jim Caslick, U.S. Fish and Wildlife Service, Gainesville, Fla. As I see the situation, as a director of a red-winged blackbird research project, we have a problem which has been defined in human terms concerning a natural animal population.